The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 5.24.6. Let $\mathcal{I}$ be a cofiltered index category. Let $i \mapsto X_ i$ be a diagram of spectral spaces such that for $a : j \to i$ in $\mathcal{I}$ the corresponding map $f_ a : X_ j \to X_ i$ is spectral. Set $X = \mathop{\mathrm{lim}}\nolimits X_ i$ and denote $p_ i : X \to X_ i$ the projection.

  1. Given any quasi-compact open $U \subset X$ there exists an $i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})$ and a quasi-compact open $U_ i \subset X_ i$ such that $p_ i^{-1}(U_ i) = U$.

  2. Given $U_ i \subset X_ i$ and $U_ j \subset X_ j$ quasi-compact opens such that $p_ i^{-1}(U_ i) \subset p_ j^{-1}(U_ j)$ there exist $k \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})$ and morphisms $a : k \to i$ and $b : k \to j$ such that $f_ a^{-1}(U_ i) \subset f_ b^{-1}(U_ j)$.

  3. If $U_ i, U_{1, i}, \ldots , U_{n, i} \subset X_ i$ are quasi-compact opens and $p_ i^{-1}(U_ i) = p_ i^{-1}(U_{1, i}) \cup \ldots \cup p_ i^{-1}(U_{n, i})$ then $f_ a^{-1}(U_ i) = f_ a^{-1}(U_{1, i}) \cup \ldots \cup f_ a^{-1}(U_{n, i})$ for some morphism $a : j \to i$ in $\mathcal{I}$.

  4. Same statement as in (3) but for intersections.

Proof. Part (1) is a special case of Lemma 5.24.4. Part (2) is a special case of Lemma 5.24.3 as quasi-compact opens are both open and closed in the constructible topology. Parts (3) and (4) follow formally from (1) and (2) and the fact that taking inverse images of subsets commutes with taking unions and intersections. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A30. Beware of the difference between the letter 'O' and the digit '0'.