Lemma 69.9.2. Let S be a scheme. Let i : Z \to X be a closed immersion of algebraic spaces over S. Let \mathcal{G} be an injective abelian sheaf on Z_{\acute{e}tale}. Then \mathcal{H}^ p_ Z(i_*\mathcal{G}) = 0 for p > 0.
Proof. This is true because the functor i_* is exact (Lemma 69.4.1) and transforms injective abelian sheaves into injective abelian sheaves (Cohomology on Sites, Lemma 21.14.2). \square
Comments (0)