Lemma 20.41.5. Let $(X, \mathcal{O}_ X)$ be a ringed space. Given complexes $\mathcal{K}^\bullet , \mathcal{L}^\bullet , \mathcal{M}^\bullet $ of $\mathcal{O}_ X$-modules there is a canonical morphism

\[ \text{Tot}(\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{L}^\bullet , \mathcal{M}^\bullet ) \otimes _{\mathcal{O}_ X} \mathcal{K}^\bullet ) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{K}^\bullet , \mathcal{L}^\bullet ), \mathcal{M}^\bullet ) \]

of complexes of $\mathcal{O}_ X$-modules functorial in all three complexes.

## Comments (0)