Lemma 10.161.10. Let $R$ be a Noetherian normal domain with fraction field $K$ of characteristic $p > 0$. Let $a \in K$ be an element such that there exists a derivation $D : R \to R$ with $D(a) \not= 0$. Then the integral closure of $R$ in $L = K[x]/(x^ p - a)$ is finite over $R$.
Proof. After replacing $x$ by $fx$ and $a$ by $f^ pa$ for some $f \in R$ we may assume $a \in R$. Hence also $D(a) \in R$. We will show by induction on $i \leq p - 1$ that if
is integral over $R$, then $D(a)^ i a_ j \in R$. Thus the integral closure is contained in the finite $R$-module with basis $D(a)^{-p + 1}x^ j$, $j = 0, \ldots , p - 1$. Since $R$ is Noetherian this proves the lemma.
If $i = 0$, then $y = a_0$ is integral over $R$ if and only if $a_0 \in R$ and the statement is true. Suppose the statement holds for some $i < p - 1$ and suppose that
is integral over $R$. Then
is an element of $R$ (as it is in $K$ and integral over $R$). Applying $D$ we obtain
is in $R$. Hence it follows that
is integral over $R$. By induction we find $D(a)^{i + 1}a_ j \in R$ for $j = 1, \ldots , i + 1$. (Here we use that $1, \ldots , i + 1$ are invertible.) Hence $D(a)^{i + 1}a_0$ is also in $R$ because it is the difference of $y$ and $\sum _{j > 0} D(a)^{i + 1}a_ jx^ j$ which are integral over $R$ (since $x$ is integral over $R$ as $a \in R$). $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: