Lemma 113.6.7. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $t$ be the minimal number of generators for $I$. Let $C$ be a Noetherian $I$-adically complete $A$-algebra. There exists an integer $d \geq 0$ depending only on $I \subset A \to C$ with the following property: given

1. $c \geq 0$ and $B$ in Algebraization of Formal Spaces, Equation (86.2.0.2) such that for $a \in I^ c$ multiplication by $a$ on $\mathop{N\! L}\nolimits _{B/A}^\wedge$ is zero in $D(B)$,

2. an integer $n > 2t\max (c, d)$,

3. an $A/I^ n$-algebra map $\psi _ n : B/I^ nB \to C/I^ nC$,

there exists a map $\varphi : B \to C$ of $A$-algebras such that $\psi _ n \bmod I^{m - c} = \varphi \bmod I^{m - c}$ with $m = \lfloor \frac{n}{t} \rfloor$.

Proof. This lemma has been obsoleted by the stronger Algebraization of Formal Spaces, Lemma 86.5.3. In fact, we will deduce the lemma from it.

Let $I \subset A \to C$ be given as in the statement above. Denote $d(\text{Gr}_ I(C))$ and $q(\text{Gr}_ I(C))$ the integers found in Local Cohomology, Section 51.22. Observe that $t$ is an upper bound for the minimal number of generators of $IC$ and hence we have $d(\text{Gr}_ I(C)) + 1 \leq t$, see discussion in Local Cohomology, Section 51.22. We may and do assume $t \geq 1$ since otherwise the lemma does not say anything. We claim that the lemma is true with

$d = q(\text{Gr}_ I(C))$

Namely, suppose that $c$, $B$, $n$, $\psi _ n$ are as in the statement above. Then we see that

$n > 2t\max (c, d) \Rightarrow n \geq 2tc + 1 \Rightarrow n \geq 2(d(\text{Gr}_ I(C)) + 1)c + 1$

On the other hand, we have

$n > 2t\max (c, d) \Rightarrow n > t(c + d) \Rightarrow n \geq q(C) + tc \geq q(\text{Gr}_ I(C)) + (d(\text{Gr}_ I(C)) + 1)c$

Hence the assumptions of Algebraization of Formal Spaces, Lemma 86.5.3 are satisfied and we obtain an $A$-algebra homomorphism $\varphi : B \to C$ which is congruent with $\psi _ n$ module $I^{n - (d(\text{Gr}_ I(C)) + 1)c}C$. Since

\begin{align*} n - (d(\text{Gr}_ I(C)) + 1)c & = \frac{n}{t} + \frac{(t - 1)n}{t} - (d(\text{Gr}_ I(C)) + 1)c \\ & \geq \frac{n}{t} + \frac{(d(\text{Gr}_ I(C))n}{t} - (d(\text{Gr}_ I(C)) + 1)c \\ & > \frac{n}{t} + \frac{d(\text{Gr}_ I(C))2tc}{t} - (d(\text{Gr}_ I(C)) + 1)c \\ & = \frac{n}{t} + 2d(\text{Gr}_ I(C))c - (d(\text{Gr}_ I(C)) + 1)c \\ & = \frac{n}{t} + d(\text{Gr}_ I(C))c - c \\ & \geq m - c \end{align*}

we see that we have the congruence of $\varphi$ and $\psi _ n$ module $I^{m - c}C$ as desired. $\square$

Comment #5883 by on

The proof of this lemma is wrong unfortunately. Please refrain from using this lemma for now.

Comment #5921 by on

This is now fixed, but in the future, instead of using this lemma, please use Lemma 86.5.3.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).