Lemma 110.12.1. Let $R$ be a ring. Let $M$ be an $R$-module which is countable. Then $M$ is a finite $R$-module if and only if $M \otimes _ R R^\mathbf {N} \to M^\mathbf {N}$ is surjective.

**Proof.**
If $M$ is a finite module, then the map is surjective by Algebra, Proposition 10.89.2. Conversely, assume the map is surjective. Let $m_1, m_2, m_3, \ldots $ be an enumeration of the elements of $M$. Let $\sum _{j = 1, \ldots , m} x_ j \otimes a_ j$ be an element of the tensor product mapping to the element $(m_ n) \in M^\mathbf {N}$. Then we see that $x_1, \ldots , x_ m$ generate $M$ over $R$ as in the proof of Algebra, Proposition 10.89.2.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: