The Stacks project

Definition 15.123.1. We say that $A \to B$ or $A \subset B$ is an extension of valuation rings if $A$ and $B$ are valuation rings and $A \to B$ is injective and local. Such an extension induces a commutative diagram

\[ \xymatrix{ A \setminus \{ 0\} \ar[r] \ar[d]_ v & B \setminus \{ 0\} \ar[d]^ v \\ \Gamma _ A \ar[r] & \Gamma _ B } \]

where $\Gamma _ A$ and $\Gamma _ B$ are the value groups. We say that $B$ is weakly unramified over $A$ if the lower horizontal arrow is a bijection. If the extension of residue fields $\kappa _ A = A/\mathfrak m_ A \subset \kappa _ B = B/\mathfrak m_ B$ is finite, then we set $f = [\kappa _ B : \kappa _ A]$ and we call it the residual degree or residue degree of the extension $A \subset B$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ASG. Beware of the difference between the letter 'O' and the digit '0'.