Lemma 15.22.7. Let $R$ be a domain. Let $M$ be a finite $R$-module. Then $M$ is torsion free if and only if $M$ is a submodule of a finite free module.
Proof. If $M$ is a submodule of $R^{\oplus n}$, then $M$ is torsion free. For the converse, assume $M$ is torsion free. Let $K$ be the fraction field of $R$. Then $M \otimes _ R K$ is a finite dimensional $K$-vector space. Choose a basis $e_1, \ldots , e_ r$ for this vector space. Let $x_1, \ldots , x_ n$ be generators of $M$. Write $x_ i = \sum (a_{ij}/b_{ij}) e_ j$ for some $a_{ij}, b_{ij} \in R$ with $b_{ij} \not= 0$. Set $b = \prod _{i, j} b_{ij}$. Since $M$ is torsion free the map $M \to M \otimes _ R K$ is injective and the image is contained in $R^{\oplus r} = R e_1/b \oplus \ldots \oplus Re_ r/b$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: