Definition 15.23.1. Let $R$ be a domain. We say an $R$-module $M$ is reflexive if the natural map
\[ j : M \longrightarrow \mathop{\mathrm{Hom}}\nolimits _ R(\mathop{\mathrm{Hom}}\nolimits _ R(M, R), R) \]
which sends $m \in M$ to the map sending $\varphi \in \mathop{\mathrm{Hom}}\nolimits _ R(M, R)$ to $\varphi (m) \in R$ is an isomorphism.
Comments (0)
There are also: