The Stacks project

Lemma 15.23.18. Let $R$ be a Noetherian normal domain with fraction field $K$. Let $M$ be a finite $R$-module. The following are equivalent

  1. $M$ is reflexive,

  2. $M$ is torsion free and has property $(S_2)$,

  3. $M$ is torsion free and $M = \bigcap _{\text{height}(\mathfrak p) = 1} M_{\mathfrak p}$ where the intersection happens in $M_ K = M \otimes _ R K$.

Proof. By Algebra, Lemma 10.157.4 we see that $R$ satisfies $(R_1)$ and $(S_2)$.

Assume (1). Then $M$ is torsion free by Lemma 15.23.2 and satisfies $(S_2)$ by Lemma 15.23.16. Thus (2) holds.

Assume (2). By definition $M' = \bigcap _{\text{height}(\mathfrak p) = 1} M_{\mathfrak p}$ is the kernel of the map

\[ M_ K \longrightarrow \bigoplus \nolimits _{\text{height}(\mathfrak p) = 1} M_ K/M_\mathfrak p \subset \prod \nolimits _{\text{height}(\mathfrak p) = 1} M_ K/M_\mathfrak p \]

Observe that our map indeed factors through the direct sum as indicated since given $a/b \in K$ there are at most finitely many height $1$ primes $\mathfrak p$ with $b \in \mathfrak p$. Let $\mathfrak p_0$ be a prime of height $1$. Then $(M_ K/M_\mathfrak p)_{\mathfrak p_0} = 0$ unless $\mathfrak p = \mathfrak p_0$ in which case we get $(M_ K/M_\mathfrak p)_{\mathfrak p_0} = M_ K/M_{\mathfrak p_0}$. Thus by exactness of localization and the fact that localization commutes with direct sums, we see that $M'_{\mathfrak p_0} = M_{\mathfrak p_0}$. Since $M$ has depth $\geq 2$ at primes of height $> 1$, we see that $M \to M'$ is an isomorphism by Lemma 15.23.14. Hence (3) holds.

Assume (3). Let $\mathfrak p$ be a prime of height $1$. Then $R_\mathfrak p$ is a discrete valuation ring by $(R_1)$. By Lemma 15.22.11 we see that $M_\mathfrak p$ is finite free, in particular reflexive. Hence the map $M \to M^{**}$ induces an isomorphism at all the primes $\mathfrak p$ of height $1$. Thus the condition $M = \bigcap _{\text{height}(\mathfrak p) = 1} M_{\mathfrak p}$ implies that $M = M^{**}$ and (1) holds. $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 15.23: Reflexive modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AVB. Beware of the difference between the letter 'O' and the digit '0'.