15.68 Spectral sequences for Ext
In this section we collect various spectral sequences that come up when considering the Ext functors. For any pair of objects $L$, $K$ of the derived category $D(R)$ of a ring $R$ we denote
\[ \mathop{\mathrm{Ext}}\nolimits ^ n_ R(L, K) = \mathop{\mathrm{Hom}}\nolimits _{D(R)}(L, K[n]) \]
according to our general conventions in Derived Categories, Section 13.27.
For $M$ an $R$-module and $K \in D^+(R)$ there is a spectral sequence
15.68.0.1
\begin{equation} \label{more-algebra-equation-first-ss-ext} E_2^{i, j} = \mathop{\mathrm{Ext}}\nolimits _ R^ i(M, H^ j(K)) \Rightarrow \mathop{\mathrm{Ext}}\nolimits _ R^{i + j}(M, K) \end{equation}
and if $K$ is represented by the bounded below complex $K^\bullet $ of $R$-modules there is a spectral sequence
15.68.0.2
\begin{equation} \label{more-algebra-equation-second-ss-ext} E_1^{i, j} = \mathop{\mathrm{Ext}}\nolimits _ R^ j(M, K^ i) \Rightarrow \mathop{\mathrm{Ext}}\nolimits _ R^{i + j}(M, K) \end{equation}
These spectral sequences come from applying Derived Categories, Lemma 13.21.3 to the functor $\mathop{\mathrm{Hom}}\nolimits _ R(M, -)$.
Comments (3)
Comment #4834 by Weixiao Lu on
Comment #5133 by Johan on
Comment #5141 by Johan on