Lemma 54.7.3. In Situation 54.7.1 there exists a nonzero $f \in \mathfrak m$ such that for every $i = 1, \ldots , r$ there exist

a closed point $x_ i \in C_ i$ with $x_ i \not\in C_ j$ for $j \not= i$,

a factorization $f = g_ i f_ i$ of $f$ in $\mathcal{O}_{X, x_ i}$ such that $g_ i \in \mathfrak m_{x_ i}$ maps to a nonzero element of $\mathcal{O}_{C_ i, x_ i}$.

## Comments (0)