Definition 33.44.1. Let k be a field, let X be a proper scheme of dimension \leq 1 over k, and let \mathcal{L} be an invertible \mathcal{O}_ X-module. The degree of \mathcal{L} is defined by
\deg (\mathcal{L}) = \chi (X, \mathcal{L}) - \chi (X, \mathcal{O}_ X)
More generally, if \mathcal{E} is a locally free sheaf of rank n we define the degree of \mathcal{E} by
\deg (\mathcal{E}) = \chi (X, \mathcal{E}) - n\chi (X, \mathcal{O}_ X)
Comments (0)
There are also: