Lemma 43.18.1. Let $X$ and $Y$ be varieties. Let $\alpha \in Z_ r(X)$ and $\beta \in Z_ s(Y)$. If $\alpha \sim _{rat} 0$ or $\beta \sim _{rat} 0$, then $\alpha \times \beta \sim _{rat} 0$.

**Proof.**
By linearity and symmetry in $X$ and $Y$, it suffices to prove this when $\alpha = [V]$ for some subvariety $V \subset X$ of dimension $s$ and $\beta = [W_ a]_ s - [W_ b]_ s$ for some closed subvariety $W \subset Y \times \mathbf{P}^1$ of dimension $s + 1$ which intersects $Y \times a$ and $Y \times b$ properly. In this case the lemma follows if we can prove

and similarly with $a$ replaced by $b$. Namely, then we see that $\alpha \times \beta = [(V \times W)_ a]_{r + s} - [(V \times W)_ b]_{r + s}$ as desired. To see the displayed equality we note the equality

of schemes. The projection $V \times W_ a \to W_ a$ induces a bijection of irreducible components (see for example Varieties, Lemma 33.8.4). Let $W' \subset W_ a$ be an irreducible component with generic point $\zeta $. Then $V \times W'$ is the corresponding irreducible component of $V \times W_ a$ (see Lemma 43.13.1). Let $\xi $ be the generic point of $V \times W'$. We have to show that

In this formula we may replace $\mathcal{O}_{Y, \zeta }$ by $\mathcal{O}_{W_ a, \zeta }$ and we may replace $\mathcal{O}_{X \times Y, \zeta }$ by $\mathcal{O}_{V \times W_ a, \zeta }$ (see Algebra, Lemma 10.52.5). As $\mathcal{O}_{W_ a, \zeta } \to \mathcal{O}_{V \times W_ a, \xi }$ is flat, by Algebra, Lemma 10.52.13 it suffices to show that

This is true because the quotient on the right is the local ring $\mathcal{O}_{V \times W', \xi }$ of a variety at a generic point hence equal to $\kappa (\xi )$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: