Lemma 10.52.5. Let $R \to S$ be a ring map. Let $M$ be an $S$-module. We always have $\text{length}_ R(M) \geq \text{length}_ S(M)$. If $R \to S$ is surjective then equality holds.

**Proof.**
A filtration of $M$ by $S$-submodules gives rise a filtration of $M$ by $R$-submodules. This proves the inequality. And if $R \to S$ is surjective, then any $R$-submodule of $M$ is automatically an $S$-submodule. Hence equality in this case.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #4878 by Peng DU on

Comment #4879 by Aise Johan de Jong on

There are also: