Lemma 10.52.4. Let $R$ be a local ring with maximal ideal $\mathfrak m$. If $M$ is an $R$-module and $\mathfrak m^ n M \not= 0$ for all $n \geq 0$, then $\text{length}_ R(M) = \infty $. In other words, if $M$ has finite length then $\mathfrak m^ nM = 0$ for some $n$.
Proof. Assume $\mathfrak m^ n M \not= 0$ for all $n\geq 0$. Choose $x \in M$ and $f_1, \ldots , f_ n \in \mathfrak m$ such that $f_1f_2 \ldots f_ n x \not= 0$. The first $n$ steps in the filtration
are distinct. For example, if $R f_1 x = R f_1 f_2 x$ , then $f_1 x = g f_1 f_2 x$ for some $g$, hence $(1 - gf_2) f_1 x = 0$ hence $f_1 x = 0$ as $1 - gf_2$ is a unit which is a contradiction with the choice of $x$ and $f_1, \ldots , f_ n$. Hence the length is infinite. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #7519 by Hao Peng on
Comment #7651 by Stacks Project on
There are also: