The Stacks project

Lemma 5.29.1. The category of topological spaces has colimits and the forgetful functor to sets commutes with them.

Proof. This follows from the discussion above and Categories, Lemma 4.14.12. Another proof of existence of colimits is sketched in Categories, Remark 4.25.2. It follows from the above that the forgetful functor commutes with colimits. Another way to see this is to use Categories, Lemma 4.24.5 and use that the forgetful functor has a right adjoint, namely the functor which assigns to a set the corresponding chaotic (or indiscrete) topological space. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 5.29: Colimits of spaces

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0B1X. Beware of the difference between the letter 'O' and the digit '0'.