Lemma 110.78.1. There exists a system $G_1 \to G_2 \to G_3 \to \ldots $ of (abelian) topological groups such that $\mathop{\mathrm{colim}}\nolimits G_ n$ taken in the category of topological spaces is different from $\mathop{\mathrm{colim}}\nolimits G_ n$ taken in the category of topological groups.
110.78 Different colimit topologies
This example is [Example 1.2, page 553, TSH]. Let $G_ n = \mathbf{Q} \times \mathbf{R}^ n$, $n \geq 1$ seen as a topological group for addition endowed with the usual (Euclidean) topology. Consider the closed embeddings $G_ n \to G_{n + 1}$ mapping $(x_0, \ldots , x_ n)$ to $(x_0, \ldots , x_ n, 0)$. We claim that $G = \mathop{\mathrm{colim}}\nolimits G_ n$ endowed with the topology
is not a topological group.
To see this we consider the set
Using that $jx_0$ is never an integral multiple of $\pi /2$ as $\pi $ is not rational it is easy to show that $U \cap G_ n$ is open. Since $0 \in U$, if the topology above made $G$ into a topological group, then there would be an open neighbourhood $V \subset G$ of $0$ such that $V + V \subset U$. Then, for every $j \geq 0$ there would exist $\epsilon _ j > 0$ such that $(0, \ldots , 0, x_ j, 0, \ldots ) \in V$ for $|x_ j| < \epsilon _ j$. Since $V + V \subset U$ we would have
for $|x_0| < \epsilon _0$ and $|x_ j| < \epsilon _ j$. However, if we take $j$ large enough such that $j \epsilon _0 > \pi /2$, then we can choose $x_0 \in \mathbf{Q}$ such that $|\cos (jx_0)|$ is smaller than $\epsilon _ j$, hence there exists an $x_ j$ with $|\cos (jx_0)| < |x_ j| < \epsilon _ j$. This contradiction proves the claim.
Proof. See discussion above. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)