Lemma 15.23.3. Let $R$ be a discrete valuation ring and let $M$ be a finite $R$-module. Then the map $j : M \to \mathop{\mathrm{Hom}}\nolimits _ R(\mathop{\mathrm{Hom}}\nolimits _ R(M, R), R)$ is surjective.
Proof. Let $M_{tors} \subset M$ be the torsion submodule. Then we have $\mathop{\mathrm{Hom}}\nolimits _ R(M, R) = \mathop{\mathrm{Hom}}\nolimits _ R(M/M_{tors}, R)$ (holds over any domain). Hence we may assume that $M$ is torsion free. Then $M$ is free by Lemma 15.22.11 and the lemma is clear. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #3601 by Remy on
Comment #3602 by Remy on
There are also: