Lemma 15.66.15. Let $A \to B$ be a ring map. Let $K^\bullet$ be a complex of $B$-modules. Let $a, b \in \mathbf{Z}$. The following are equivalent

1. $K^\bullet$ has tor amplitude in $[a, b]$ as a complex of $A$-modules,

2. $K^\bullet _\mathfrak q$ has tor amplitude in $[a, b]$ as a complex of $A_\mathfrak p$-modules for every prime $\mathfrak q \subset B$ with $\mathfrak p = A \cap \mathfrak q$,

3. $K^\bullet _\mathfrak m$ has tor amplitude in $[a, b]$ as a complex of $A_\mathfrak p$-modules for every maximal ideal $\mathfrak m \subset B$ with $\mathfrak p = A \cap \mathfrak m$.

Proof. Assume (3) and let $M$ be an $A$-module. Then $H^ i = H^ i(K^\bullet \otimes _ A^\mathbf {L} M)$ is a $B$-module and $(H^ i)_\mathfrak m = H^ i(K^\bullet _\mathfrak m \otimes _{A_\mathfrak p}^\mathbf {L} M_\mathfrak p)$. Hence $H^ i = 0$ for $i \not\in [a, b]$ by Algebra, Lemma 10.23.1. Thus (3) $\Rightarrow$ (1). We omit the proofs of (1) $\Rightarrow$ (2) and (2) $\Rightarrow$ (3). $\square$

There are also:

• 2 comment(s) on Section 15.66: Tor dimension

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).