Lemma 42.34.3. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Then the rule that to $f : X' \to X$ assigns $c_1(f^*\mathcal{L}) \cap - : \mathop{\mathrm{CH}}\nolimits _ k(X') \to \mathop{\mathrm{CH}}\nolimits _{k - 1}(X')$ is a bivariant class of degree $1$.
Comments (0)
There are also: