The Stacks project

Lemma 39.9.6. Let $k$ be a field. Let $A$ be an abelian variety over $k$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ A$-module. Then there is an isomorphism

\[ m_{1, 2, 3}^*\mathcal{L} \otimes m_1^*\mathcal{L} \otimes m_2^*\mathcal{L} \otimes m_3^*\mathcal{L} \cong m_{1, 2}^*\mathcal{L} \otimes m_{1, 3}^*\mathcal{L} \otimes m_{2, 3}^*\mathcal{L} \]

of invertible modules on $A \times _ k A \times _ k A$ where $m_{i_1, \ldots , i_ t} : A \times _ k A \times _ k A \to A$ is the morphism $(x_1, x_2, x_3) \mapsto \sum x_{i_ j}$.

Proof. Apply the theorem of the cube (More on Morphisms, Theorem 37.33.8) to the difference

\[ \mathcal{M} = m_{1, 2, 3}^*\mathcal{L} \otimes m_1^*\mathcal{L} \otimes m_2^*\mathcal{L} \otimes m_3^*\mathcal{L} \otimes m_{1, 2}^*\mathcal{L}^{\otimes -1} \otimes m_{1, 3}^*\mathcal{L}^{\otimes -1} \otimes m_{2, 3}^*\mathcal{L}^{\otimes -1} \]

This works because the restriction of $\mathcal{M}$ to $A \times A \times e = A \times A$ is equal to

\[ n_{1, 2}^*\mathcal{L} \otimes n_1^*\mathcal{L} \otimes n_2^*\mathcal{L} \otimes n_{1, 2}^*\mathcal{L}^{\otimes -1} \otimes n_1^*\mathcal{L}^{\otimes -1} \otimes n_2^*\mathcal{L}^{\otimes -1} \cong \mathcal{O}_{A \times _ k A} \]

where $n_{i_1, \ldots , i_ t} : A \times _ k A \to A$ is the morphism $(x_1, x_2) \mapsto \sum x_{i_ j}$. Similarly for $A \times e \times A$ and $e \times A \times A$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BFE. Beware of the difference between the letter 'O' and the digit '0'.