Lemma 39.9.7. Let k be a field. Let A be an abelian variety over k. Let \mathcal{L} be an invertible \mathcal{O}_ A-module. Then
where [n] : A \to A sends x to x + x + \ldots + x with n summands and where [-1] : A \to A is the inverse of A.
Lemma 39.9.7. Let k be a field. Let A be an abelian variety over k. Let \mathcal{L} be an invertible \mathcal{O}_ A-module. Then
where [n] : A \to A sends x to x + x + \ldots + x with n summands and where [-1] : A \to A is the inverse of A.
Proof. Consider the morphism A \to A \times _ k A \times _ k A, x \mapsto (x, x, -x) where -x = [-1](x). Pulling back the relation of Lemma 39.9.6 we obtain
which proves the result for n = 2. By induction assume the result holds for 1, 2, \ldots , n. Then consider the morphism A \to A \times _ k A \times _ k A, x \mapsto (x, x, [n - 1]x). Pulling back the relation of Lemma 39.9.6 we obtain
and the result follows by elementary arithmetic. \square
Comments (0)