Lemma 89.3.2. Let $X, x_ i, U_ i \to X, u_ i$ be as in (89.3.0.1). If $f : Y \to X$ corresponds to $g_ i : Y_ i \to U_ i$ under $F$, then $f$ is quasi-compact, quasi-separated, separated, locally of finite presentation, of finite presentation, locally of finite type, of finite type, proper, integral, finite, if and only if $g_ i$ is so for $i = 1, \ldots , n$.
Proof. Follows from Limits of Spaces, Lemma 70.19.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)