5 Topics in Geometry

Chapter 81: Chow Groups of Spaces
 Section 81.1: Introduction
 Section 81.2: Setup
 Section 81.3: Cycles
 Section 81.4: Multiplicities
 Section 81.5: Cycle associated to a closed subspace
 Section 81.6: Cycle associated to a coherent sheaf
 Section 81.7: Preparation for proper pushforward
 Section 81.8: Proper pushforward
 Section 81.9: Preparation for flat pullback
 Section 81.10: Flat pullback
 Section 81.11: Push and pull
 Section 81.12: Preparation for principal divisors
 Section 81.13: Principal divisors
 Section 81.14: Principal divisors and pushforward
 Section 81.15: Rational equivalence
 Section 81.16: Rational equivalence and push and pull
 Section 81.17: The divisor associated to an invertible sheaf
 Section 81.18: Intersecting with an invertible sheaf
 Section 81.19: Intersecting with an invertible sheaf and push and pull
 Section 81.20: The key formula
 Section 81.21: Intersecting with an invertible sheaf and rational equivalence
 Section 81.22: Intersecting with effective Cartier divisors
 Section 81.23: Gysin homomorphisms
 Section 81.24: Relative effective Cartier divisors
 Section 81.25: Affine bundles
 Section 81.26: Bivariant intersection theory
 Section 81.27: Projective space bundle formula
 Section 81.28: The Chern classes of a vector bundle
 Section 81.29: Polynomial relations among Chern classes
 Section 81.30: Additivity of Chern classes
 Section 81.31: The splitting principle
 Section 81.32: Degrees of zero cycles

Chapter 82: Quotients of Groupoids
 Section 82.1: Introduction
 Section 82.2: Conventions and notation
 Section 82.3: Invariant morphisms
 Section 82.4: Categorical quotients
 Section 82.5: Quotients as orbit spaces
 Section 82.6: Coarse quotients
 Section 82.7: Topological properties
 Section 82.8: Invariant functions
 Section 82.9: Good quotients
 Section 82.10: Geometric quotients

Chapter 83: More on Cohomology of Spaces
 Section 83.1: Introduction
 Section 83.2: Conventions
 Section 83.3: Transporting results from schemes
 Section 83.4: Proper base change
 Section 83.5: Comparing big and small topoi
 Section 83.6: Comparing fppf and étale topologies
 Section 83.7: Comparing fppf and étale topologies: modules
 Section 83.8: Comparing ph and étale topologies

Chapter 84: Simplicial Spaces
 Section 84.1: Introduction
 Section 84.2: Simplicial topological spaces
 Section 84.3: Simplicial sites and topoi
 Section 84.4: Augmentations of simplicial sites
 Section 84.5: Morphisms of simplicial sites
 Section 84.6: Ringed simplicial sites
 Section 84.7: Morphisms of ringed simplicial sites
 Section 84.8: Cohomology on simplicial sites
 Section 84.9: Cohomology and augmentations of simplicial sites
 Section 84.10: Cohomology on ringed simplicial sites
 Section 84.11: Cohomology and augmentations of ringed simplicial sites
 Section 84.12: Cartesian sheaves and modules
 Section 84.13: Simplicial systems of the derived category
 Section 84.14: Simplicial systems of the derived category: modules
 Section 84.15: The site associated to a semirepresentable object
 Section 84.16: The site associate to a simplicial semirepresentable object
 Section 84.17: Cohomological descent for hypercoverings
 Section 84.18: Cohomological descent for hypercoverings: modules
 Section 84.19: Cohomological descent for hypercoverings of an object
 Section 84.20: Cohomological descent for hypercoverings of an object: modules
 Section 84.21: Hypercovering by a simplicial object of the site
 Section 84.22: Hypercovering by a simplicial object of the site: modules
 Section 84.23: Unbounded cohomological descent for hypercoverings
 Section 84.24: Glueing complexes
 Section 84.25: Proper hypercoverings in topology
 Section 84.26: Simplicial schemes
 Section 84.27: Descent in terms of simplicial schemes
 Section 84.28: Quasicoherent modules on simplicial schemes
 Section 84.29: Groupoids and simplicial schemes
 Section 84.30: Descent data give equivalence relations
 Section 84.31: An example case
 Section 84.32: Simplicial algebraic spaces
 Section 84.33: Fppf hypercoverings of algebraic spaces
 Section 84.34: Fppf hypercoverings of algebraic spaces: modules
 Section 84.35: Fppf descent of complexes
 Section 84.36: Proper hypercoverings of algebraic spaces

Chapter 85: Duality for Spaces
 Section 85.1: Introduction
 Section 85.2: Dualizing complexes on algebraic spaces
 Section 85.3: Right adjoint of pushforward
 Section 85.4: Right adjoint of pushforward and base change, I
 Section 85.5: Right adjoint of pushforward and base change, II
 Section 85.6: Right adjoint of pushforward and trace maps
 Section 85.7: Right adjoint of pushforward and pullback
 Section 85.8: Right adjoint of pushforward for proper flat morphisms
 Section 85.9: Relative dualizing complexes for proper flat morphisms
 Section 85.10: Comparison with the case of schemes

Chapter 86: Formal Algebraic Spaces
 Section 86.1: Introduction
 Section 86.2: Formal schemes à la EGA
 Section 86.3: Conventions and notation
 Section 86.4: Topological rings and modules
 Section 86.5: Taut ring maps
 Section 86.6: Adic ring maps
 Section 86.7: Weakly adic rings
 Section 86.8: Descending properties
 Section 86.9: Affine formal algebraic spaces
 Section 86.10: Countably indexed affine formal algebraic spaces
 Section 86.11: Formal algebraic spaces
 Section 86.12: The reduction
 Section 86.13: Colimits of algebraic spaces along thickenings
 Section 86.14: Completion along a closed subset
 Section 86.15: Fibre products
 Section 86.16: Separation axioms for formal algebraic spaces
 Section 86.17: Quasicompact formal algebraic spaces
 Section 86.18: Quasicompact and quasiseparated formal algebraic spaces
 Section 86.19: Morphisms representable by algebraic spaces
 Section 86.20: Types of formal algebraic spaces
 Section 86.21: Morphisms and continuous ring maps
 Section 86.22: Taut ring maps and representability by algebraic spaces
 Section 86.23: Adic morphisms
 Section 86.24: Morphisms of finite type
 Section 86.25: Surjective morphisms
 Section 86.26: Monomorphisms
 Section 86.27: Closed immersions
 Section 86.28: Restricted power series
 Section 86.29: Algebras topologically of finite type
 Section 86.30: Separation axioms for morphisms
 Section 86.31: Proper morphisms
 Section 86.32: Formal algebraic spaces and fpqc coverings
 Section 86.33: Maps out of affine formal schemes
 Section 86.34: The small étale site of a formal algebraic space
 Section 86.35: The structure sheaf
 Section 86.36: Colimits of formal algebraic spaces
 Section 86.37: Recompletion
 Section 86.38: Completion along a closed subspace

Chapter 87: Algebraization of Formal Spaces
 Section 87.1: Introduction
 Section 87.2: Two categories
 Section 87.3: A naive cotangent complex
 Section 87.4: Rigsmooth algebras
 Section 87.5: Deformations of ring homomorphisms
 Section 87.6: Algebraization of rigsmooth algebras over Grings
 Section 87.7: Algebraization of rigsmooth algebras
 Section 87.8: Rigétale algebras
 Section 87.9: A pushout argument
 Section 87.10: Algebraization of rigétale algebras
 Section 87.11: Finite type morphisms
 Section 87.12: Finite type on reductions
 Section 87.13: Flat morphisms
 Section 87.14: Rigclosed points
 Section 87.15: Rigflat homomorphisms
 Section 87.16: Rigflat morphisms
 Section 87.17: Rigsmooth homomorphisms
 Section 87.18: Rigsmooth morphisms
 Section 87.19: Rigétale homomorphisms
 Section 87.20: Rigétale morphisms
 Section 87.21: Rigsurjective morphisms
 Section 87.22: Formal algebraic spaces over cdvrs
 Section 87.23: The completion functor
 Section 87.24: Formal modifications
 Section 87.25: Completions and morphisms, I
 Section 87.26: Rig glueing of morphisms
 Section 87.27: Algebraization of rigétale morphisms
 Section 87.28: Completions and morphisms, II
 Section 87.29: Artin's theorem on dilatations
 Section 87.30: Application to modifications

Chapter 88: Resolution of Surfaces Revisited
 Section 88.1: Introduction
 Section 88.2: Modifications
 Section 88.3: Strategy
 Section 88.4: Dominating by quadratic transformations
 Section 88.5: Dominating by normalized blowups
 Section 88.6: Base change to the completion
 Section 88.7: Implied properties
 Section 88.8: Resolution
 Section 88.9: Examples