Lemma 83.10.1. In Situation 83.3.3 let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}_{total}$. There is a complex

of $\mathcal{O}$-modules which forms a resolution of $\mathcal{O}$. Here $g_{n!}$ is as in Lemma 83.6.1.

This section is the analogue of Section 83.8 for sheaves of modules.

In Situation 83.3.3 let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}_{total}$. In statement of the following lemmas we will let $g_ n : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ n), \mathcal{O}_ n) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_{total}), \mathcal{O})$ be the morphism of ringed topoi of Lemma 83.6.1. If $\varphi : [m] \to [n]$ is a morphism of $\Delta $, then the diagram of ringed topoi

\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ n), \mathcal{O}_ n) \ar[rd]_{g_ n} \ar[rr]_{f_\varphi } & & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ m), \mathcal{O}_ m) \ar[ld]^{g_ m} \\ & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_{total}), \mathcal{O}) } \]

is not commutative, but there is a $2$-morphism $g_ n \to g_ m \circ f_\varphi $ coming from the maps $\mathcal{F}(\varphi ) : f_\varphi ^{-1}\mathcal{F}_ m \to \mathcal{F}_ n$. See Sites, Section 7.36.

Lemma 83.10.1. In Situation 83.3.3 let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}_{total}$. There is a complex

\[ \ldots \to g_{2!}\mathcal{O}_2 \to g_{1!}\mathcal{O}_1 \to g_{0!}\mathcal{O}_0 \]

of $\mathcal{O}$-modules which forms a resolution of $\mathcal{O}$. Here $g_{n!}$ is as in Lemma 83.6.1.

**Proof.**
We will use the description of $g_{n!}$ given in Lemma 83.3.5. As maps of the complex we take $\sum (-1)^ i d^ n_ i$ where $d^ n_ i : g_{n!}\mathcal{O}_ n \to g_{n - 1!}\mathcal{O}_{n - 1}$ is the adjoint to the map $\mathcal{O}_ n \to \bigoplus _{[n - 1] \to [n]} \mathcal{O}_ n = g_ n^*g_{n - 1!}\mathcal{O}_{n - 1}$ corresponding to the factor labeled with $\delta ^ n_ i : [n - 1] \to [n]$. Then $g_ m^{-1}$ applied to the complex gives the complex

\[ \ldots \to \bigoplus \nolimits _{\alpha \in \mathop{Mor}\nolimits _\Delta ([2], [m])]} \mathcal{O}_ m \to \bigoplus \nolimits _{\alpha \in \mathop{Mor}\nolimits _\Delta ([1], [m])]} \mathcal{O}_ m \to \bigoplus \nolimits _{\alpha \in \mathop{Mor}\nolimits _\Delta ([0], [m])]} \mathcal{O}_ m \]

on $\mathcal{C}_ m$. In other words, this is the complex associated to the free $\mathcal{O}_ m$-module on the simplicial set $\Delta [m]$, see Simplicial, Example 14.11.2. Since $\Delta [m]$ is homotopy equivalent to $\Delta [0]$, see Simplicial, Example 14.26.7, and since “taking free abelian sheaf on” is a functor, we see that the complex above is homotopy equivalent to the free abelian sheaf on $\Delta [0]$ (Simplicial, Remark 14.26.4 and Lemma 14.27.2). This complex is acyclic in positive degrees and equal to $\mathcal{O}_ m$ in degree $0$. $\square$

Lemma 83.10.2. In Situation 83.3.3 let $\mathcal{O}$ be a sheaf of rings. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules. There is a canonical complex

\[ 0 \to \Gamma (\mathcal{C}_{total}, \mathcal{F}) \to \Gamma (\mathcal{C}_0, \mathcal{F}_0) \to \Gamma (\mathcal{C}_1, \mathcal{F}_1) \to \Gamma (\mathcal{C}_2, \mathcal{F}_2) \to \ldots \]

which is exact in degrees $-1, 0$ and exact everywhere if $\mathcal{F}$ is an injective $\mathcal{O}$-module.

**Proof.**
Observe that $\mathop{\mathrm{Hom}}\nolimits (\mathcal{O}, \mathcal{F}) = \Gamma (\mathcal{C}_{total}, \mathcal{F})$ and $\mathop{\mathrm{Hom}}\nolimits (g_{n!}\mathcal{O}_ n, \mathcal{F}) = \Gamma (\mathcal{C}_ n, \mathcal{F}_ n)$. Hence this lemma is an immediate consequence of Lemma 83.10.1 and the fact that $\mathop{\mathrm{Hom}}\nolimits (-, \mathcal{F})$ is exact if $\mathcal{F}$ is injective.
$\square$

Lemma 83.10.3. In Situation 83.3.3 let $\mathcal{O}$ be a sheaf of rings. For $K$ in $D^+(\mathcal{O})$ there is a spectral sequence $(E_ r, d_ r)_{r \geq 0}$ with

\[ E_1^{p, q} = H^ q(\mathcal{C}_ p, K_ p),\quad d_1^{p, q} : E_1^{p, q} \to E_1^{p + 1, q} \]

converging to $H^{p + q}(\mathcal{C}_{total}, K)$. This spectral sequence is functorial in $K$.

**Proof.**
Let $\mathcal{I}^\bullet $ be a bounded below complex of injective $\mathcal{O}$-modules representing $K$. Consider the double complex with terms

\[ A^{p, q} = \Gamma (\mathcal{C}_ p, \mathcal{I}^ q_ p) \]

where the horizontal arrows come from Lemma 83.10.2 and the vertical arrows from the differentials of the complex $\mathcal{I}^\bullet $. Observe that $\Gamma (\mathcal{D}, -) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_\mathcal {D}}(\mathcal{O}_\mathcal {D}, -)$ on $\textit{Mod}(\mathcal{O}_\mathcal {D})$. Hence the lemma says rows of the double complex are exact in positive degrees and evaluate to $\Gamma (\mathcal{C}_{total}, \mathcal{I}^ q)$ in degree $0$. Thus the total complex associated to the double complex computes $R\Gamma (\mathcal{C}_{total}, K)$ by Homology, Lemma 12.25.4. On the other hand, since restriction to $\mathcal{C}_ p$ is exact (Lemma 83.3.5) the complex $\mathcal{I}_ p^\bullet $ represents $K_ p$ in $D(\mathcal{C}_ p)$. The sheaves $\mathcal{I}_ p^ q$ are totally acyclic on $\mathcal{C}_ p$ (Lemma 83.6.2). Hence the cohomology of the columns computes the groups $H^ q(\mathcal{C}_ p, K_ p)$ by Leray's acyclicity lemma (Derived Categories, Lemma 13.16.7) and Cohomology on Sites, Lemma 21.14.3. We conclude by applying Homology, Lemma 12.25.3. $\square$

Lemma 83.10.4. In Situation 83.3.3 let $\mathcal{O}$ be a sheaf of rings. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}_ n)$. Let $\mathcal{F} \in \textit{Mod}(\mathcal{O})$. Then $H^ p(U, \mathcal{F}) = H^ p(U, g_ n^*\mathcal{F})$ where on the left hand side $U$ is viewed as an object of $\mathcal{C}_{total}$.

**Proof.**
Observe that “$U$ viewed as object of $\mathcal{C}_{total}$” is explained by the construction of $\mathcal{C}_{total}$ in Lemma 83.3.1 in case (A) and Lemma 83.3.2 in case (B). In both cases the functor $\mathcal{C}_ n \to \mathcal{C}$ is continuous and cocontinuous, see Lemma 83.3.5, and $g_ n^{-1}\mathcal{O} = \mathcal{O}_ n$ by definition. Hence the result is a special case of Cohomology on Sites, Lemma 21.36.5.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)