Lemma 12.25.3. Let $\mathcal{A}$ be an abelian category. Let $K^{\bullet , \bullet }$ be a double complex. Assume that for every $n \in \mathbf{Z}$ there are only finitely many nonzero $K^{p, q}$ with $p + q = n$. Then
the two spectral sequences associated to $K^{\bullet , \bullet }$ are bounded,
the filtrations $F_ I$, $F_{II}$ on each $H^ n(\text{Tot}(K^{\bullet , \bullet }))$ are finite,
the spectral sequences $({}'E_ r, {}'d_ r)_{r \geq 0}$ and $({}''E_ r, {}''d_ r)_{r \geq 0}$ converge to $H^*(\text{Tot}(K^{\bullet , \bullet }))$,
if $\mathcal{C} \subset \mathcal{A}$ is a weak Serre subcategory and for some $r$ we have ${}'E_ r^{p, q} \in \mathcal{C}$ for all $p, q \in \mathbf{Z}$, then $H^ n(\text{Tot}(K^{\bullet , \bullet }))$ is in $\mathcal{C}$. Similarly for $({}''E_ r, {}''d_ r)_{r \geq 0}$.
Comments (2)
Comment #7058 by Xiaolong Liu on
Comment #7246 by Johan on
There are also: