Lemma 21.14.3. Let (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) be a ringed topos. A totally acyclic sheaf is right acyclic for the following functors:
the functor H^0(U, -) for any object U of \mathcal{C},
the functor \mathcal{F} \mapsto \mathcal{F}(K) for any presheaf of sets K,
the functor \Gamma (\mathcal{C}, -) of global sections,
the functor f_* for any morphism f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) of ringed topoi.
Comments (0)