Lemma 82.30.1. In Situation 82.2.1 let $X/B$ be good. Let $\mathcal{E}$, $\mathcal{F}$ be finite locally free sheaves on $X$ of ranks $r$, $r - 1$ which fit into a short exact sequence
Then we have
in $A^*(X)$.
This section is the analogue of Chow Homology, Section 42.40.
Lemma 82.30.1. In Situation 82.2.1 let $X/B$ be good. Let $\mathcal{E}$, $\mathcal{F}$ be finite locally free sheaves on $X$ of ranks $r$, $r - 1$ which fit into a short exact sequence
Then we have
in $A^*(X)$.
Proof. The proof is identical to the proof of Chow Homology, Lemma 42.40.1 replacing the lemmas used there by Lemmas 82.26.9, 82.24.1, 82.19.4, and 82.28.1. $\square$
Lemma 82.30.2. In Situation 82.2.1 let $X/B$ be good. Let $\mathcal{E}$, $\mathcal{F}$ be finite locally free sheaves on $X$ of ranks $r$, $r - 1$ which fit into a short exact sequence
where $\mathcal{L}$ is an invertible sheaf. Then
in $A^*(X)$.
Proof. The proof is identical to the proof of Chow Homology, Lemma 42.40.2 replacing the lemmas used there by Lemmas 82.30.1 and 82.29.1. $\square$
Lemma 82.30.3. In Situation 82.2.1 let $X/B$ be good. Suppose that $\mathcal{E}$ sits in an exact sequence
of finite locally free sheaves $\mathcal{E}_ i$ of rank $r_ i$. The total Chern classes satisfy
in $A^*(X)$.
Proof. The proof is identical to the proof of Chow Homology, Lemma 42.40.3 replacing the lemmas used there by Lemmas 82.26.9, 82.30.2, and 82.28.1. $\square$
Lemma 82.30.4. In Situation 82.2.1 let $X/B$ be good. Let ${\mathcal L}_ i$, $i = 1, \ldots , r$ be invertible $\mathcal{O}_ X$-modules. Let $\mathcal{E}$ be a locally free rank $\mathcal{O}_ X$-module endowed with a filtration
such that $\mathcal{E}_ i/\mathcal{E}_{i - 1} \cong \mathcal{L}_ i$. Set $c_1({\mathcal L}_ i) = x_ i$. Then
in $A^*(X)$.
Proof. Apply Lemma 82.30.2 and induction. $\square$
Comments (0)