The Stacks project

Lemma 81.24.1. In Situation 81.2.1. Let $X, Y/B$ be good. Let $p : X \to Y$ be a flat morphism of relative dimension $r$. Let $i : D \to X$ be a relative effective Cartier divisor (Divisors on Spaces, Definition 70.9.2). Let $\mathcal{L} = \mathcal{O}_ X(D)$. For any $\alpha \in \mathop{\mathrm{CH}}\nolimits _{k + 1}(Y)$ we have

\[ i^*p^*\alpha = (p|_ D)^*\alpha \]

in $\mathop{\mathrm{CH}}\nolimits _{k + r}(D)$ and

\[ c_1(\mathcal{L}) \cap p^*\alpha = i_* ((p|_ D)^*\alpha ) \]

in $\mathop{\mathrm{CH}}\nolimits _{k + r}(X)$.

Proof. Let $W \subset Y$ be an integral closed subspace of $\delta $-dimension $k + 1$. By Divisors on Spaces, Lemma 70.9.1 we see that $D \cap p^{-1}W$ is an effective Cartier divisor on $p^{-1}W$. By Lemma 81.22.7 we get the first equality in

\[ i^*[p^{-1}W]_{k + r + 1} = [D \cap p^{-1}W]_{k + r} = [(p|_ D)^{-1}(W)]_{k + r}. \]

and the second because $D \cap p^{-1}(W) = (p|_ D)^{-1}(W)$ as algebraic spaces. Since by definition $p^*[W] = [p^{-1}W]_{k + r + 1}$ we see that $i^*p^*[W] = (p|_ D)^*[W]$ as cycles. If $\alpha = \sum m_ j[W_ j]$ is a general $k + 1$ cycle, then we get $i^*\alpha = \sum m_ j i^*p^*[W_ j] = \sum m_ j(p|_ D)^*[W_ j]$ as cycles. This proves then first equality. To deduce the second from the first apply Lemma 81.22.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ERE. Beware of the difference between the letter 'O' and the digit '0'.