Lemma 82.24.1. In Situation 82.2.1. Let $X, Y/B$ be good. Let $p : X \to Y$ be a flat morphism of relative dimension $r$. Let $i : D \to X$ be a relative effective Cartier divisor (Divisors on Spaces, Definition 71.9.2). Let $\mathcal{L} = \mathcal{O}_ X(D)$. For any $\alpha \in \mathop{\mathrm{CH}}\nolimits _{k + 1}(Y)$ we have
\[ i^*p^*\alpha = (p|_ D)^*\alpha \]
in $\mathop{\mathrm{CH}}\nolimits _{k + r}(D)$ and
\[ c_1(\mathcal{L}) \cap p^*\alpha = i_* ((p|_ D)^*\alpha ) \]
in $\mathop{\mathrm{CH}}\nolimits _{k + r}(X)$.
Proof.
Let $W \subset Y$ be an integral closed subspace of $\delta $-dimension $k + 1$. By Divisors on Spaces, Lemma 71.9.1 we see that $D \cap p^{-1}W$ is an effective Cartier divisor on $p^{-1}W$. By Lemma 82.22.7 we get the first equality in
\[ i^*[p^{-1}W]_{k + r + 1} = [D \cap p^{-1}W]_{k + r} = [(p|_ D)^{-1}(W)]_{k + r}. \]
and the second because $D \cap p^{-1}(W) = (p|_ D)^{-1}(W)$ as algebraic spaces. Since by definition $p^*[W] = [p^{-1}W]_{k + r + 1}$ we see that $i^*p^*[W] = (p|_ D)^*[W]$ as cycles. If $\alpha = \sum m_ j[W_ j]$ is a general $k + 1$ cycle, then we get $i^*\alpha = \sum m_ j i^*p^*[W_ j] = \sum m_ j(p|_ D)^*[W_ j]$ as cycles. This proves then first equality. To deduce the second from the first apply Lemma 82.22.4.
$\square$
Comments (0)