## 80.24 Relative effective Cartier divisors

This section is the analogue of Chow Homology, Section 42.30. Relative effective Cartier divisors are defined in Divisors on Spaces, Section 69.9. To develop the basic results on chern classes of vector bundles we only need the case where both the ambient scheme and the effective Cartier divisor are flat over the base.

Lemma 80.24.1. In Situation 80.2.1. Let $X, Y/B$ be good. Let $p : X \to Y$ be a flat morphism of relative dimension $r$. Let $i : D \to X$ be a relative effective Cartier divisor (Divisors on Spaces, Definition 69.9.2). Let $\mathcal{L} = \mathcal{O}_ X(D)$. For any $\alpha \in \mathop{\mathrm{CH}}\nolimits _{k + 1}(Y)$ we have

$i^*p^*\alpha = (p|_ D)^*\alpha$

in $\mathop{\mathrm{CH}}\nolimits _{k + r}(D)$ and

$c_1(\mathcal{L}) \cap p^*\alpha = i_* ((p|_ D)^*\alpha )$

in $\mathop{\mathrm{CH}}\nolimits _{k + r}(X)$.

Proof. Let $W \subset Y$ be an integral closed subspace of $\delta$-dimension $k + 1$. By Divisors on Spaces, Lemma 69.9.1 we see that $D \cap p^{-1}W$ is an effective Cartier divisor on $p^{-1}W$. By Lemma 80.22.7 we get the first equality in

$i^*[p^{-1}W]_{k + r + 1} = [D \cap p^{-1}W]_{k + r} = [(p|_ D)^{-1}(W)]_{k + r}.$

and the second because $D \cap p^{-1}(W) = (p|_ D)^{-1}(W)$ as algebraic spaces. Since by definition $p^*[W] = [p^{-1}W]_{k + r + 1}$ we see that $i^*p^*[W] = (p|_ D)^*[W]$ as cycles. If $\alpha = \sum m_ j[W_ j]$ is a general $k + 1$ cycle, then we get $i^*\alpha = \sum m_ j i^*p^*[W_ j] = \sum m_ j(p|_ D)^*[W_ j]$ as cycles. This proves then first equality. To deduce the second from the first apply Lemma 80.22.4. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).