Lemma 82.23.1. In Situation 82.2.1 let $X/B$ be good. Assume $X$ integral and $n = \dim _\delta (X)$. Let $i : D \to X$ be an effective Cartier divisor. Let $\mathcal{N}$ be an invertible $\mathcal{O}_ X$-module and let $t$ be a nonzero meromorphic section of $\mathcal{N}$. Then $i^*\text{div}_\mathcal {N}(t) = c_1(\mathcal{N}) \cap [D]_{n - 1}$ in $\mathop{\mathrm{CH}}\nolimits _{n - 2}(D)$.
82.23 Gysin homomorphisms
This section is the analogue of Chow Homology, Section 42.30. In this section we use the key formula to show the Gysin homomorphism factor through rational equivalence.
Proof. Write $\text{div}_\mathcal {N}(t) = \sum \text{ord}_{Z_ i, \mathcal{N}}(t)[Z_ i]$ for some integral closed subspaces $Z_ i \subset X$ of $\delta $-dimension $n - 1$. We may assume that the family $\{ Z_ i\} $ is locally finite, that $t \in \Gamma (U, \mathcal{N}|_ U)$ is a generator where $U = X \setminus \bigcup Z_ i$, and that every irreducible component of $D$ is one of the $Z_ i$, see Spaces over Fields, Lemmas 72.6.1, 72.6.6, and 72.7.2.
Set $\mathcal{L} = \mathcal{O}_ X(D)$. Denote $s \in \Gamma (X, \mathcal{O}_ X(D)) = \Gamma (X, \mathcal{L})$ the canonical section. We will apply the discussion of Section 82.20 to our current situation. For each $i$ let $\xi _ i \in |Z_ i|$ be its generic point. Let $B_ i = \mathcal{O}_{X, \xi _ i}^ h$. For each $i$ we pick generators $s_ i$ of $\mathcal{L}_{\xi _ i}$ and $t_ i$ of $\mathcal{N}_{\xi _ i}$ over $B_ i$ but we insist that we pick $s_ i = s$ if $Z_ i \not\subset D$. Write $s = f_ i s_ i$ and $t = g_ i t_ i$ with $f_ i, g_ i \in B_ i$. Then $\text{ord}_{Z_ i, \mathcal{N}}(t) = \text{ord}_{B_ i}(g_ i)$. On the other hand, we have $f_ i \in B_ i$ and
because of our choices of $s_ i$. We claim that
as cycles. More precisely, the right hand side is a cycle representing the left hand side. Namely, this is clear by our formula for $\text{div}_\mathcal {N}(t)$ and the fact that $\text{div}_{\mathcal{L}|_{Z_ i}}(s_ i|_{Z_ i}) = [Z(s_ i|_{Z_ i})]_{n - 2} = [Z_ i \cap D]_{n - 2}$ when $Z_ i \not\subset D$ because in that case $s_ i|_{Z_ i} = s|_{Z_ i}$ is a regular section, see Lemma 82.17.2. Similarly,
The key formula (Lemma 82.20.1) gives the equality
of cycles. If $Z_ i \not\subset D$, then $f_ i = 1$ and hence $\text{div}_{Z_ i}(\partial _{B_ i}(f_ i, g_ i)) = 0$. Thus we get a rational equivalence between our specific cycles representing $i^*\text{div}_\mathcal {N}(t)$ and $c_1(\mathcal{N}) \cap [D]_{n - 1}$ on $D$. This finishes the proof. $\square$
Lemma 82.23.2. In Situation 82.2.1 let $X/B$ be good. Let $(\mathcal{L}, s, i : D \to X)$ be as in Definition 82.22.1. The Gysin homomorphism factors through rational equivalence to give a map $i^* : \mathop{\mathrm{CH}}\nolimits _{k + 1}(X) \to \mathop{\mathrm{CH}}\nolimits _ k(D)$.
Proof. Let $\alpha \in Z_{k + 1}(X)$ and assume that $\alpha \sim _{rat} 0$. This means there exists a locally finite collection of integral closed subspaces $W_ j \subset X$ of $\delta $-dimension $k + 2$ and $f_ j \in R(W_ j)^*$ such that $\alpha = \sum i_{j, *}\text{div}_{W_ j}(f_ j)$. Set $X' = \coprod W_ i$ and consider the diagram
of Remark 82.22.3. Since $X' \to X$ is proper we see that $i^*p_* = q_*(i')^*$ by Lemma 82.22.5. As we know that $q_*$ factors through rational equivalence (Lemma 82.16.3), it suffices to prove the result for $\alpha ' = \sum \text{div}_{W_ j}(f_ j)$ on $X'$. Clearly this reduces us to the case where $X$ is integral and $\alpha = \text{div}(f)$ for some $f \in R(X)^*$.
Assume $X$ is integral and $\alpha = \text{div}(f)$ for some $f \in R(X)^*$. If $X = D$, then we see that $i^*\alpha $ is equal to $c_1(\mathcal{L}) \cap \alpha $. This is rationally equivalent to zero by Lemma 82.21.2. If $D \not= X$, then we see that $i^*\text{div}_ X(f)$ is equal to $c_1(\mathcal{O}_ D) \cap [D]_{n - 1}$ in $\mathop{\mathrm{CH}}\nolimits _ k(D)$ by Lemma 82.23.1. Of course capping with $c_1(\mathcal{O}_ D)$ is the zero map. $\square$
Lemma 82.23.3. In Situation 82.2.1 let $X/B$ be good. Let $(\mathcal{L}, s, i : D \to X)$ be a triple as in Definition 82.22.1. Let $\mathcal{N}$ be an invertible $\mathcal{O}_ X$-module. Then $i^*(c_1(\mathcal{N}) \cap \alpha ) = c_1(i^*\mathcal{N}) \cap i^*\alpha $ in $\mathop{\mathrm{CH}}\nolimits _{k - 2}(D)$ for all $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(Z)$.
Proof. With exactly the same proof as in Lemma 82.23.2 this follows from Lemmas 82.19.4, 82.21.3, and 82.23.1. $\square$
Lemma 82.23.4. In Situation 82.2.1 let $X/B$ be good. Let $(\mathcal{L}, s, i : D \to X)$ and $(\mathcal{L}', s', i' : D' \to X)$ be two triples as in Definition 82.22.1. Then the diagram commutes where each of the maps is a gysin map.
Proof. Denote $j : D \cap D' \to D$ and $j' : D \cap D' \to D'$ the closed immersions corresponding to $(\mathcal{L}|_{D'}, s|_{D'}$ and $(\mathcal{L}'_ D, s|_ D)$. We have to show that $(j')^*i^*\alpha = j^* (i')^*\alpha $ for all $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$. Let $W \subset X$ be an integral closed subscheme of dimension $k$. We will prove the equality in case $\alpha = [W]$. The general case will then follow from the observation in Remark 82.15.3 (and the specific shape of our rational equivalence produced below). We will deduce the equality for $\alpha = [W]$ from the key formula.
We let $\sigma $ be a nonzero meromorphic section of $\mathcal{L}|_ W$ which we require to be equal to $s|_ W$ if $W \not\subset D$. We let $\sigma '$ be a nonzero meromorphic section of $\mathcal{L}'|_ W$ which we require to be equal to $s'|_ W$ if $W \not\subset D'$. Write
and similarly
as in the discussion in Section 82.20. Then we see that $Z_ i \subset D$ if $n_ i \not= 0$ and $Z'_ i \subset D'$ if $n'_ i \not= 0$. For each $i$, let $\xi _ i \in |Z_ i|$ be the generic point. As in Section 82.20 we choose for each $i$ an element $\sigma _ i \in \mathcal{L}_{\xi _ i}$, resp. $\sigma '_ i \in \mathcal{L}'_{\xi _ i}$ which generates over $B_ i = \mathcal{O}_{W, \xi _ i}^ h$ and which is equal to the image of $s$, resp. $s'$ if $Z_ i \not\subset D$, resp. $Z_ i \not\subset D'$. Write $\sigma = f_ i \sigma _ i$ and $\sigma ' = f'_ i\sigma '_ i$ so that $n_ i = \text{ord}_{B_ i}(f_ i)$ and $n'_ i = \text{ord}_{B_ i}(f'_ i)$. From our definitions it follows that
as cycles and
The key formula (Lemma 82.20.1) now gives the equality
of cycles. Note that $\text{div}_{Z_ i}(\partial _{B_ i}(f_ i, f'_ i)) = 0$ if $Z_ i \not\subset D \cap D'$ because in this case either $f_ i = 1$ or $f'_ i = 1$. Thus we get a rational equivalence between our specific cycles representing $(j')^*i^*[W]$ and $j^*(i')^*[W]$ on $D \cap D' \cap W$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)