Lemma 82.23.3. In Situation 82.2.1 let X/B be good. Let (\mathcal{L}, s, i : D \to X) be a triple as in Definition 82.22.1. Let \mathcal{N} be an invertible \mathcal{O}_ X-module. Then i^*(c_1(\mathcal{N}) \cap \alpha ) = c_1(i^*\mathcal{N}) \cap i^*\alpha in \mathop{\mathrm{CH}}\nolimits _{k - 2}(D) for all \alpha \in \mathop{\mathrm{CH}}\nolimits _ k(Z).
Proof. With exactly the same proof as in Lemma 82.23.2 this follows from Lemmas 82.19.4, 82.21.3, and 82.23.1. \square
Comments (0)