Lemma 81.23.3. In Situation 81.2.1 let $X/B$ be good. Let $(\mathcal{L}, s, i : D \to X)$ be a triple as in Definition 81.22.1. Let $\mathcal{N}$ be an invertible $\mathcal{O}_ X$-module. Then $i^*(c_1(\mathcal{N}) \cap \alpha ) = c_1(i^*\mathcal{N}) \cap i^*\alpha $ in $\mathop{\mathrm{CH}}\nolimits _{k - 2}(D)$ for all $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(Z)$.
Proof. With exactly the same proof as in Lemma 81.23.2 this follows from Lemmas 81.19.4, 81.21.3, and 81.23.1. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)