The Stacks project

Lemma 82.23.4. In Situation 82.2.1 let $X/B$ be good. Let $(\mathcal{L}, s, i : D \to X)$ and $(\mathcal{L}', s', i' : D' \to X)$ be two triples as in Definition 82.22.1. Then the diagram

\[ \xymatrix{ \mathop{\mathrm{CH}}\nolimits _ k(X) \ar[r]_{i^*} \ar[d]_{(i')^*} & \mathop{\mathrm{CH}}\nolimits _{k - 1}(D) \ar[d] \\ \mathop{\mathrm{CH}}\nolimits _{k - 1}(D') \ar[r] & \mathop{\mathrm{CH}}\nolimits _{k - 2}(D \cap D') } \]

commutes where each of the maps is a gysin map.

Proof. Denote $j : D \cap D' \to D$ and $j' : D \cap D' \to D'$ the closed immersions corresponding to $(\mathcal{L}|_{D'}, s|_{D'}$ and $(\mathcal{L}'_ D, s|_ D)$. We have to show that $(j')^*i^*\alpha = j^* (i')^*\alpha $ for all $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$. Let $W \subset X$ be an integral closed subscheme of dimension $k$. We will prove the equality in case $\alpha = [W]$. The general case will then follow from the observation in Remark 82.15.3 (and the specific shape of our rational equivalence produced below). We will deduce the equality for $\alpha = [W]$ from the key formula.

We let $\sigma $ be a nonzero meromorphic section of $\mathcal{L}|_ W$ which we require to be equal to $s|_ W$ if $W \not\subset D$. We let $\sigma '$ be a nonzero meromorphic section of $\mathcal{L}'|_ W$ which we require to be equal to $s'|_ W$ if $W \not\subset D'$. Write

\[ \text{div}_{\mathcal{L}|_ W}(\sigma ) = \sum \text{ord}_{Z_ i, \mathcal{L}|_ W}(\sigma )[Z_ i] = \sum n_ i[Z_ i] \]

and similarly

\[ \text{div}_{\mathcal{L}'|_ W}(\sigma ') = \sum \text{ord}_{Z_ i, \mathcal{L}'|_ W}(\sigma ')[Z_ i] = \sum n'_ i[Z_ i] \]

as in the discussion in Section 82.20. Then we see that $Z_ i \subset D$ if $n_ i \not= 0$ and $Z'_ i \subset D'$ if $n'_ i \not= 0$. For each $i$, let $\xi _ i \in |Z_ i|$ be the generic point. As in Section 82.20 we choose for each $i$ an element $\sigma _ i \in \mathcal{L}_{\xi _ i}$, resp. $\sigma '_ i \in \mathcal{L}'_{\xi _ i}$ which generates over $B_ i = \mathcal{O}_{W, \xi _ i}^ h$ and which is equal to the image of $s$, resp. $s'$ if $Z_ i \not\subset D$, resp. $Z_ i \not\subset D'$. Write $\sigma = f_ i \sigma _ i$ and $\sigma ' = f'_ i\sigma '_ i$ so that $n_ i = \text{ord}_{B_ i}(f_ i)$ and $n'_ i = \text{ord}_{B_ i}(f'_ i)$. From our definitions it follows that

\[ (j')^*i^*[W] = \sum \text{ord}_{B_ i}(f_ i) \text{div}_{\mathcal{L}'|_{Z_ i}}(\sigma '_ i|_{Z_ i}) \]

as cycles and

\[ j^*(i')^*[W] = \sum \text{ord}_{B_ i}(f'_ i) \text{div}_{\mathcal{L}|_{Z_ i}}(\sigma _ i|_{Z_ i}) \]

The key formula (Lemma 82.20.1) now gives the equality

\[ \sum \left( \text{ord}_{B_ i}(f_ i) \text{div}_{\mathcal{L}'|_{Z_ i}}(\sigma '_ i|_{Z_ i}) - \text{ord}_{B_ i}(f'_ i) \text{div}_{\mathcal{L}|_{Z_ i}}(\sigma _ i|_{Z_ i}) \right) = \sum \text{div}_{Z_ i}(\partial _{B_ i}(f_ i, f'_ i)) \]

of cycles. Note that $\text{div}_{Z_ i}(\partial _{B_ i}(f_ i, f'_ i)) = 0$ if $Z_ i \not\subset D \cap D'$ because in this case either $f_ i = 1$ or $f'_ i = 1$. Thus we get a rational equivalence between our specific cycles representing $(j')^*i^*[W]$ and $j^*(i')^*[W]$ on $D \cap D' \cap W$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ERC. Beware of the difference between the letter 'O' and the digit '0'.