Processing math: 100%

The Stacks project

Lemma 82.19.4. In Situation 82.2.1 let X, Y/B be good. Let p : X \to Y be a proper morphism. Let \alpha \in Z_{k + 1}(X). Let \mathcal{L} be an invertible sheaf on Y. Then

p_*(c_1(p^*\mathcal{L}) \cap \alpha ) = c_1(\mathcal{L}) \cap p_*\alpha

in \mathop{\mathrm{CH}}\nolimits _ k(Y).

Proof. Suppose that p has the property that for every integral closed subspace W \subset X the map p|_ W : W \to Y is a closed immersion. Then, by definition of capping with c_1(\mathcal{L}) the lemma holds.

We will use this remark to reduce to a special case. Namely, write \alpha = \sum n_ i[W_ i] with n_ i \not= 0 and W_ i pairwise distinct. Let W'_ i \subset Y be the “image” of W_ i as in Lemma 82.7.1. Consider the diagram

\xymatrix{ X' = \coprod W_ i \ar[r]_-q \ar[d]_{p'} & X \ar[d]^ p \\ Y' = \coprod W'_ i \ar[r]^-{q'} & Y. }

Since \{ W_ i\} is locally finite on X, and p is proper we see that \{ W'_ i\} is locally finite on Y and that q, q', p' are also proper morphisms. We may think of \sum n_ i[W_ i] also as a k-cycle \alpha ' \in Z_ k(X'). Clearly q_*\alpha ' = \alpha . We have q_*(c_1(q^*p^*\mathcal{L}) \cap \alpha ') = c_1(p^*\mathcal{L}) \cap q_*\alpha ' and (q')_*(c_1((q')^*\mathcal{L}) \cap p'_*\alpha ') = c_1(\mathcal{L}) \cap q'_*p'_*\alpha ' by the initial remark of the proof. Hence it suffices to prove the lemma for the morphism p' and the cycle \sum n_ i[W_ i]. Clearly, this means we may assume X, Y integral, f : X \to Y dominant and \alpha = [X]. In this case the result follows from Lemma 82.19.3. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.