Lemma 82.22.5. In Situation 82.2.1. Let f : X' \to X be a proper morphism of good algebraic spaces over B. Let (\mathcal{L}, s, i : D \to X) be as in Definition 82.22.1. Form the diagram
\xymatrix{ D' \ar[d]_ g \ar[r]_{i'} & X' \ar[d]^ f \\ D \ar[r]^ i & X }
as in Remark 82.22.3. For any (k + 1)-cycle \alpha ' on X' we have i^*f_*\alpha ' = g_*(i')^*\alpha ' in \mathop{\mathrm{CH}}\nolimits _ k(D) (this makes sense as f_* is defined on the level of cycles).
Proof.
Suppose \alpha = [W'] for some integral closed subspace W' \subset X'. Let W \subset X be the “image” of W' as in Lemma 82.7.1. In case W' \not\subset D', then W \not\subset D and we see that
[W' \cap D']_ k = \text{div}_{\mathcal{L}'|_{W'}}({s'|_{W'}}) \quad \text{and}\quad [W \cap D]_ k = \text{div}_{\mathcal{L}|_ W}(s|_ W)
and hence f_* of the first cycle equals the second cycle by Lemma 82.19.3. Hence the equality holds as cycles. In case W' \subset D', then W \subset D and f_*(c_1(\mathcal{L}|_{W'}) \cap [W']) is equal to c_1(\mathcal{L}|_ W) \cap [W] in \mathop{\mathrm{CH}}\nolimits _ k(W) by the second assertion of Lemma 82.19.3. By Remark 82.15.3 the result follows for general \alpha '.
\square
Comments (0)