Lemma 70.7.2. Let $S$ be a scheme. Let $X$ be a locally Noetherian integral algebraic space over $S$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $s \in \mathcal{K}_ X(\mathcal{L})$ be a regular (i.e., nonzero) meromorphic section of $\mathcal{L}$. Then the sets

$\{ Z \subset X \mid Z \text{ a prime divisor with generic point }\xi \text{ and }s\text{ not in }\mathcal{L}_\xi \}$

and

$\{ Z \subset X \mid Z \text{ is a prime divisor and } \text{ord}_{Z, \mathcal{L}}(s) \not= 0\}$

are locally finite in $X$.

Proof. There exists a nonempty open subspace $U \subset X$ such that $s$ corresponds to a section of $\Gamma (U, \mathcal{L})$ which generates $\mathcal{L}$ over $U$. Hence the prime divisors which can occur in the sets of the lemma all correspond to irreducible components of $|X| \setminus |U|$. Hence Lemma 70.6.1. gives the desired result. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).