Lemma 70.7.3. Let $S$ be a scheme. Let $X$ be a locally Noetherian integral algebraic space over $S$ Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $s, s' \in \mathcal{K}_ X(\mathcal{L})$ be nonzero meromorphic sections of $\mathcal{L}$. Then $f = s/s'$ is an element of $R(X)^*$ and we have

as Weil divisors.

## Comments (0)