Lemma 80.29.1. In Situation 80.2.1 let $X/B$ be good. Let $\mathcal{E}$ be a finite locally free sheaf of rank $r$ on $X$. Let $\mathcal{L}$ be an invertible sheaf on $X$. Then we have

in $A^*(X)$.

In Situation 80.2.1 let $X/B$ be good. Let $\mathcal{E}_ i$ be a finite collection of finite locally free $\mathcal{O}_ X$-modules. By Lemma 80.28.4 we see that the chern classes

\[ c_ j(\mathcal{E}_ i) \in A^*(X) \]

generate a commutative (and even central) $\mathbf{Z}$-subalgebra of the Chow cohomology $A^*(X)$. Thus we can say what it means for a polynomial in these chern classes to be zero, or for two polynomials to be the same. As an example, saying that $c_1(\mathcal{E}_1)^5 + c_2(\mathcal{E}_2)c_3(\mathcal{E}_3) = 0$ means that the operations

\[ \mathop{\mathrm{CH}}\nolimits _ k(Y) \longrightarrow \mathop{\mathrm{CH}}\nolimits _{k - 5}(Y), \quad \alpha \longmapsto c_1(\mathcal{E}_1)^5 \cap \alpha + c_2(\mathcal{E}_2) \cap c_3(\mathcal{E}_3) \cap \alpha \]

are zero for all morphisms $f : Y \to X$ of good algebraic spaces over $B$. By Lemma 80.26.9 this is equivalent to the requirement that given any morphism $f : Y \to X$ where $Y$ is an integral algebraic space locally of finite type over $X$ the cycle

\[ c_1(\mathcal{E}_1)^5 \cap [Y] + c_2(\mathcal{E}_2) \cap c_3(\mathcal{E}_3) \cap [Y] \]

is zero in $\mathop{\mathrm{CH}}\nolimits _{\dim (Y) - 5}(Y)$.

A specific example is the relation

\[ c_1(\mathcal{L} \otimes _{\mathcal{O}_ X} \mathcal{N}) = c_1(\mathcal{L}) + c_1(\mathcal{N}) \]

proved in Lemma 80.18.2. More generally, here is what happens when we tensor an arbitrary locally free sheaf by an invertible sheaf.

Lemma 80.29.1. In Situation 80.2.1 let $X/B$ be good. Let $\mathcal{E}$ be a finite locally free sheaf of rank $r$ on $X$. Let $\mathcal{L}$ be an invertible sheaf on $X$. Then we have

80.29.1.1

\begin{equation} \label{spaces-chow-equation-twist} c_ i({\mathcal E} \otimes {\mathcal L}) = \sum \nolimits _{j = 0}^ i \binom {r - i + j}{j} c_{i - j}({\mathcal E}) c_1({\mathcal L})^ j \end{equation}

in $A^*(X)$.

**Proof.**
The proof is identical to the proof of Chow Homology, Lemma 42.38.1 replacing the lemmas used there by Lemmas 80.26.9 and 80.28.1.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)