Lemma 82.28.1. In Situation 82.2.1 let $X/B$ be good. Let $\mathcal{E}$ be a finite locally free sheaf of rank $r$ on $X$. Let $(\pi : P \to X, \mathcal{O}_ P(1))$ be the projective space bundle associated to $\mathcal{E}$. For every morphism $X' \to X$ of good algebraic spaces over $B$ there are unique maps
\[ c_ i(\mathcal{E}) \cap - : \mathop{\mathrm{CH}}\nolimits _ k(X') \longrightarrow \mathop{\mathrm{CH}}\nolimits _{k - i}(X'),\quad i = 0, \ldots , r \]
such that for $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X')$ we have $c_0(\mathcal{E}) \cap \alpha = \alpha $ and
\[ \sum \nolimits _{i = 0, \ldots , r} (-1)^ i c_1(\mathcal{O}_{P'}(1))^ i \cap (\pi ')^*\left(c_{r - i}(\mathcal{E}) \cap \alpha \right) = 0 \]
where $\pi ' : P' \to X'$ is the base change of $\pi $. Moreover, these maps define a bivariant class $c_ i(\mathcal{E})$ of degree $i$ on $X$.
Proof.
Uniqueness and existence of the maps $c_ i(\mathcal{E}) \cap -$ follows immediately from Lemma 82.27.2 and the given description of $c_0(\mathcal{E})$. For every $i \in \mathbf{Z}$ the rule which to every morphism $X' \to X$ of good algebraic spaces over $B$ assigns the map
\[ t_ i(\mathcal{E}) \cap - : \mathop{\mathrm{CH}}\nolimits _ k(X') \longrightarrow \mathop{\mathrm{CH}}\nolimits _{k - i}(X'),\quad \alpha \longmapsto \pi '_*(c_1(\mathcal{O}_{P'}(1))^{r - 1 + i} \cap (\pi ')^*\alpha ) \]
is a bivariant class1 by Lemmas 82.26.4, 82.26.5, and 82.26.7. By Lemma 82.27.1 we have $t_ i(\mathcal{E}) = 0$ for $i < 0$ and $t_0(\mathcal{E}) = 1$. Applying pushforward to the equation in the statement of the lemma we find from Lemma 82.27.1 that
\[ (-1)^ r t_1(\mathcal{E}) + (-1)^{r - 1}c_1(\mathcal{E}) = 0 \]
In particular we find that $c_1(\mathcal{E})$ is a bivariant class. If we multiply the equation in the statement of the lemma by $c_1(\mathcal{O}_{P'}(1))$ and push the result forward to $X'$ we find
\[ (-1)^ r t_2(\mathcal{E}) + (-1)^{r - 1} t_1(\mathcal{E}) \cap c_1(\mathcal{E}) + (-1)^{r - 2} c_2(\mathcal{E}) = 0 \]
As before we conclude that $c_2(\mathcal{E})$ is a bivariant class. And so on.
$\square$
Comments (0)