The Stacks project

Lemma 82.27.2 (Projective space bundle formula). Let $(S, \delta )$ be as in Situation 82.2.1. Let $X$ be locally of finite type over $S$. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_ X$-module $\mathcal{E}$ of rank $r$. Let $(\pi : P \to X, \mathcal{O}_ P(1))$ be the projective bundle associated to $\mathcal{E}$. The map

\[ \bigoplus \nolimits _{i = 0}^{r - 1} \mathop{\mathrm{CH}}\nolimits _{k + i}(X) \longrightarrow \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(P), \]
\[ (\alpha _0, \ldots , \alpha _{r-1}) \longmapsto \pi ^*\alpha _0 + c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1 + \ldots + c_1(\mathcal{O}_ P(1))^{r - 1} \cap \pi ^*\alpha _{r-1} \]

is an isomorphism.

Proof. Fix $k \in \mathbf{Z}$. We first show the map is injective. Suppose that $(\alpha _0, \ldots , \alpha _{r - 1})$ is an element of the left hand side that maps to zero. By Lemma 82.27.1 we see that

\[ 0 = \pi _*(\pi ^*\alpha _0 + c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1 + \ldots + c_1(\mathcal{O}_ P(1))^{r - 1} \cap \pi ^*\alpha _{r-1}) = \alpha _{r - 1} \]

Next, we see that

\[ 0 = \pi _*(c_1(\mathcal{O}_ P(1)) \cap (\pi ^*\alpha _0 + c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1 + \ldots + c_1(\mathcal{O}_ P(1))^{r - 2} \cap \pi ^*\alpha _{r - 2})) = \alpha _{r - 2} \]

and so on. Hence the map is injective.

To prove the map is surjective, we will argue exactly as in the proof of Lemma 82.25.1 to reduce to the case of schemes. We urge the reader to skip the proof.

Let $\beta \in \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(P)$. Write $\beta = \sum m_ j[W_ j]$ with $m_ j \not= 0$ and $W_ j$ pairwise distinct integral closed subspaces of $\delta $-dimension $k + r$. Then the family $\{ W_ j\} $ is locally finite in $P$. Let $Z_ j \subset X$ be the “image” of $W_ j$ as in Lemma 82.7.1. For any quasi-compact open $U \subset X$ we see that $\pi ^{-1}(U) \cap W_ j$ is nonempty only for finitely many $j$. Hence the collection $Z_ j$ of images is a locally finite collection of integral closed subspaces of $X$.

Consider the fibre product diagrams

\[ \xymatrix{ P_ j \ar[r] \ar[d]_{\pi _ j} & P \ar[d]^\pi \\ Z_ j \ar[r] & X } \]

Suppose that $[W_ j] \in Z_{k + r - 1}(P_ j)$ is rationally equivalent to

\[ \pi _ j^*\alpha _{j, 0} + c_1(\mathcal{O}(1)) \cap \pi _ j^*\alpha _{j, 1} + \ldots + c_1(\mathcal{O}(1))^{r - 1} \cap \pi _ j^*\alpha _{j, r - 1} \]

for some $(k + i)$-cycle $\alpha _{j, i} \in \mathop{\mathrm{CH}}\nolimits _{k + i}(Z_ j)$. Then $\alpha _ i = \sum m_ j \beta _{j, i}$ will be a $(k + i)$-cycle on $X$ and

\[ \pi ^*\alpha _0 + c_1(\mathcal{O}(1)) \cap \pi ^*\alpha _1 + \ldots + c_1(\mathcal{O}(1))^{r - 1} \cap \pi ^*\alpha _{r - 1} \]

will be rationally equivalent to $\beta $ (see Remark 82.15.3). This reduces us to the case $X$ integral, and $\alpha = [W]$ for some integral closed subscheme of $P$ dominating $X$. In particular we may assume that $d = \dim _\delta (X) < \infty $.

Hence we can use induction on $d = \dim _\delta (X)$. If $d < k$, then $\mathop{\mathrm{CH}}\nolimits _{k + r - 1}(X) = 0$ and the lemma holds; this is the base case of the induction. Consider a nonempty open $U \subset X$. Suppose that we can show that

\[ \beta |_{\pi ^{-1}(U)} = \pi ^*\alpha _0 + c_1(\mathcal{O}(1)) \cap \pi ^*\alpha _1 + \ldots + c_1(\mathcal{O}(1))^{r - 1} \cap \pi ^*\alpha _{r - 1} \]

for some $\alpha _ i \in Z_{k + i}(U)$. By Lemma 82.10.2 we see that $\alpha _ i = \alpha '_ i|_ U$ for some $\alpha '_ i \in Z_{k + i}(X)$. By the exact sequences $\mathop{\mathrm{CH}}\nolimits _{k + i}(\pi ^{-1}(X \setminus U)) \to \mathop{\mathrm{CH}}\nolimits _{k + i}(P) \to \mathop{\mathrm{CH}}\nolimits _{k + i}(\pi ^{-1}(U))$ of Lemma 82.15.2 we see that

\[ \beta - \left(\pi ^*\alpha '_0 + c_1(\mathcal{O}(1)) \cap \pi ^*\alpha '_1 + \ldots + c_1(\mathcal{O}(1))^{r - 1} \cap \pi ^*\alpha '_{r - 1}\right) \]

comes from a cycle $\beta ' \in \mathop{\mathrm{CH}}\nolimits _{k + r}(\pi ^{-1}(X \setminus U))$. Since $\dim _\delta (X \setminus U) < d$ we win by induction on $d$.

In particular, by replacing $X$ by a suitable open we may assume $X$ is a scheme and we have reduced our problem to Chow Homology, Lemma 42.36.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ERV. Beware of the difference between the letter 'O' and the digit '0'.