Lemma 82.27.3. In Situation 82.2.1 let $X/B$ be good. Let $\mathcal{E}$ be a finite locally free sheaf of rank $r$ on $X$. Let
\[ p : E = \underline{\mathop{\mathrm{Spec}}}(\text{Sym}^*(\mathcal{E})) \longrightarrow X \]
be the associated vector bundle over $X$. Then $p^* : \mathop{\mathrm{CH}}\nolimits _ k(X) \to \mathop{\mathrm{CH}}\nolimits _{k + r}(E)$ is an isomorphism for all $k$.
Proof.
(For the case of linebundles, see Lemma 82.25.2.) For surjectivity see Lemma 82.25.1. Let $(\pi : P \to X, \mathcal{O}_ P(1))$ be the projective space bundle associated to the finite locally free sheaf $\mathcal{E} \oplus \mathcal{O}_ X$. Let $s \in \Gamma (P, \mathcal{O}_ P(1))$ correspond to the global section $(0, 1) \in \Gamma (X, \mathcal{E} \oplus \mathcal{O}_ X)$. Let $D = Z(s) \subset P$. Note that $(\pi |_ D : D \to X , \mathcal{O}_ P(1)|_ D)$ is the projective space bundle associated to $\mathcal{E}$. We denote $\pi _ D = \pi |_ D$ and $\mathcal{O}_ D(1) = \mathcal{O}_ P(1)|_ D$. Moreover, $D$ is an effective Cartier divisor on $P$. Hence $\mathcal{O}_ P(D) = \mathcal{O}_ P(1)$ (see Divisors on Spaces, Lemma 71.7.8). Also there is an isomorphism $E \cong P \setminus D$. Denote $j : E \to P$ the corresponding open immersion. For injectivity we use that the kernel of
\[ j^* : \mathop{\mathrm{CH}}\nolimits _{k + r}(P) \longrightarrow \mathop{\mathrm{CH}}\nolimits _{k + r}(E) \]
are the cycles supported in the effective Cartier divisor $D$, see Lemma 82.15.2. So if $p^*\alpha = 0$, then $\pi ^*\alpha = i_*\beta $ for some $\beta \in \mathop{\mathrm{CH}}\nolimits _{k + r}(D)$. By Lemma 82.27.2 we may write
\[ \beta = \pi _ D^*\beta _0 + \ldots + c_1(\mathcal{O}_ D(1))^{r - 1} \cap \pi _ D^* \beta _{r - 1}. \]
for some $\beta _ i \in \mathop{\mathrm{CH}}\nolimits _{k + i}(X)$. By Lemmas 82.24.1 and 82.19.4 this implies
\[ \pi ^*\alpha = i_*\beta = c_1(\mathcal{O}_ P(1)) \cap \pi ^*\beta _0 + \ldots + c_1(\mathcal{O}_ D(1))^ r \cap \pi ^*\beta _{r - 1}. \]
Since the rank of $\mathcal{E} \oplus \mathcal{O}_ X$ is $r + 1$ this contradicts Lemma 82.19.4 unless all $\alpha $ and all $\beta _ i$ are zero.
$\square$
Comments (0)