Lemma 82.27.3. In Situation 82.2.1 let X/B be good. Let \mathcal{E} be a finite locally free sheaf of rank r on X. Let
p : E = \underline{\mathop{\mathrm{Spec}}}(\text{Sym}^*(\mathcal{E})) \longrightarrow X
be the associated vector bundle over X. Then p^* : \mathop{\mathrm{CH}}\nolimits _ k(X) \to \mathop{\mathrm{CH}}\nolimits _{k + r}(E) is an isomorphism for all k.
Proof.
(For the case of linebundles, see Lemma 82.25.2.) For surjectivity see Lemma 82.25.1. Let (\pi : P \to X, \mathcal{O}_ P(1)) be the projective space bundle associated to the finite locally free sheaf \mathcal{E} \oplus \mathcal{O}_ X. Let s \in \Gamma (P, \mathcal{O}_ P(1)) correspond to the global section (0, 1) \in \Gamma (X, \mathcal{E} \oplus \mathcal{O}_ X). Let D = Z(s) \subset P. Note that (\pi |_ D : D \to X , \mathcal{O}_ P(1)|_ D) is the projective space bundle associated to \mathcal{E}. We denote \pi _ D = \pi |_ D and \mathcal{O}_ D(1) = \mathcal{O}_ P(1)|_ D. Moreover, D is an effective Cartier divisor on P. Hence \mathcal{O}_ P(D) = \mathcal{O}_ P(1) (see Divisors on Spaces, Lemma 71.7.8). Also there is an isomorphism E \cong P \setminus D. Denote j : E \to P the corresponding open immersion. For injectivity we use that the kernel of
j^* : \mathop{\mathrm{CH}}\nolimits _{k + r}(P) \longrightarrow \mathop{\mathrm{CH}}\nolimits _{k + r}(E)
are the cycles supported in the effective Cartier divisor D, see Lemma 82.15.2. So if p^*\alpha = 0, then \pi ^*\alpha = i_*\beta for some \beta \in \mathop{\mathrm{CH}}\nolimits _{k + r}(D). By Lemma 82.27.2 we may write
\beta = \pi _ D^*\beta _0 + \ldots + c_1(\mathcal{O}_ D(1))^{r - 1} \cap \pi _ D^* \beta _{r - 1}.
for some \beta _ i \in \mathop{\mathrm{CH}}\nolimits _{k + i}(X). By Lemmas 82.24.1 and 82.19.4 this implies
\pi ^*\alpha = i_*\beta = c_1(\mathcal{O}_ P(1)) \cap \pi ^*\beta _0 + \ldots + c_1(\mathcal{O}_ D(1))^ r \cap \pi ^*\beta _{r - 1}.
Since the rank of \mathcal{E} \oplus \mathcal{O}_ X is r + 1 this contradicts Lemma 82.19.4 unless all \alpha and all \beta _ i are zero.
\square
Comments (0)