Lemma 71.7.8. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
If $D \subset X$ is an effective Cartier divisor, then the canonical section $1_ D$ of $\mathcal{O}_ X(D)$ is regular.
Conversely, if $s$ is a regular section of the invertible sheaf $\mathcal{L}$, then there exists a unique effective Cartier divisor $D = Z(s) \subset X$ and a unique isomorphism $\mathcal{O}_ X(D) \to \mathcal{L}$ which maps $1_ D$ to $s$.
The constructions $D \mapsto (\mathcal{O}_ X(D), 1_ D)$ and $(\mathcal{L}, s) \mapsto Z(s)$ give mutually inverse maps
Comments (0)