The Stacks project

Lemma 42.36.2 (Projective space bundle formula). Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_ X$-module $\mathcal{E}$ of rank $r$. Let $(\pi : P \to X, \mathcal{O}_ P(1))$ be the projective bundle associated to $\mathcal{E}$. The map

\[ \bigoplus \nolimits _{i = 0}^{r - 1} \mathop{\mathrm{CH}}\nolimits _{k + i}(X) \longrightarrow \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(P), \]
\[ (\alpha _0, \ldots , \alpha _{r-1}) \longmapsto \pi ^*\alpha _0 + c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1 + \ldots + c_1(\mathcal{O}_ P(1))^{r - 1} \cap \pi ^*\alpha _{r-1} \]

is an isomorphism.

Proof. Fix $k \in \mathbf{Z}$. We first show the map is injective. Suppose that $(\alpha _0, \ldots , \alpha _{r - 1})$ is an element of the left hand side that maps to zero. By Lemma 42.36.1 we see that

\[ 0 = \pi _*(\pi ^*\alpha _0 + c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1 + \ldots + c_1(\mathcal{O}_ P(1))^{r - 1} \cap \pi ^*\alpha _{r-1}) = \alpha _{r - 1} \]

Next, we see that

\[ 0 = \pi _*(c_1(\mathcal{O}_ P(1)) \cap (\pi ^*\alpha _0 + c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1 + \ldots + c_1(\mathcal{O}_ P(1))^{r - 2} \cap \pi ^*\alpha _{r - 2})) = \alpha _{r - 2} \]

and so on. Hence the map is injective.

It remains to show the map is surjective. Let $X_ i$, $i \in I$ be the irreducible components of $X$. Then $P_ i = \mathbf{P}(\mathcal{E}|_{X_ i})$, $i \in I$ are the irreducible components of $P$. Consider the commutative diagram

\[ \xymatrix{ \coprod P_ i \ar[d]_{\coprod \pi _ i} \ar[r]_ p & P \ar[d]^\pi \\ \coprod X_ i \ar[r]^ q & X } \]

Observe that $p_*$ is surjective. If $\beta \in \mathop{\mathrm{CH}}\nolimits _ k(\coprod X_ i)$ then $\pi ^* q_* \beta = p_*(\coprod \pi _ i)^* \beta $, see Lemma 42.15.1. Similarly for capping with $c_1(\mathcal{O}(1))$ by Lemma 42.26.4. Hence, if the map of the lemma is surjective for each of the morphisms $\pi _ i : P_ i \to X_ i$, then the map is surjective for $\pi : P \to X$. Hence we may assume $X$ is irreducible. Thus $\dim _\delta (X) < \infty $ and in particular we may use induction on $\dim _\delta (X)$.

The result is clear if $\dim _\delta (X) < k$. Let $\alpha \in \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(P)$. For any locally closed subscheme $T \subset X$ denote $\gamma _ T : \bigoplus \mathop{\mathrm{CH}}\nolimits _{k + i}(T) \to \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(\pi ^{-1}(T))$ the map

\[ \gamma _ T(\alpha _0, \ldots , \alpha _{r - 1}) = \pi ^*\alpha _0 + \ldots + c_1(\mathcal{O}_{\pi ^{-1}(T)}(1))^{r - 1} \cap \pi ^*\alpha _{r - 1}. \]

Suppose for some nonempty open $U \subset X$ we have $\alpha |_{\pi ^{-1}(U)} = \gamma _ U(\alpha _0, \ldots , \alpha _{r - 1})$. Then we may choose lifts $\alpha '_ i \in \mathop{\mathrm{CH}}\nolimits _{k + i}(X)$ and we see that $\alpha - \gamma _ X(\alpha '_0, \ldots , \alpha '_{r - 1})$ is by Lemma 42.19.3 rationally equivalent to a $k$-cycle on $P_ Y = \mathbf{P}(\mathcal{E}|_ Y)$ where $Y = X \setminus U$ as a reduced closed subscheme. Note that $\dim _\delta (Y) < \dim _\delta (X)$. By induction the result holds for $P_ Y \to Y$ and hence the result holds for $\alpha $. Hence we may replace $X$ by any nonempty open of $X$.

In particular we may assume that $\mathcal{E} \cong \mathcal{O}_ X^{\oplus r}$. In this case $\mathbf{P}(\mathcal{E}) = X \times \mathbf{P}^{r - 1}$. Let us use the stratification

\[ \mathbf{P}^{r - 1} = \mathbf{A}^{r - 1} \amalg \mathbf{A}^{r - 2} \amalg \ldots \amalg \mathbf{A}^0 \]

The closure of each stratum is a $\mathbf{P}^{r - 1 - i}$ which is a representative of $c_1(\mathcal{O}(1))^ i \cap [\mathbf{P}^{r - 1}]$. Hence $P$ has a similar stratification

\[ P = U^{r - 1} \amalg U^{r - 2} \amalg \ldots \amalg U^0 \]

Let $P^ i$ be the closure of $U^ i$. Let $\pi ^ i : P^ i \to X$ be the restriction of $\pi $ to $P^ i$. Let $\alpha \in \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(P)$. By Lemma 42.32.1 we can write $\alpha |_{U^{r - 1}} = \pi ^*\alpha _0|_{U^{r - 1}}$ for some $\alpha _0 \in \mathop{\mathrm{CH}}\nolimits _ k(X)$. Hence the difference $\alpha - \pi ^*\alpha _0$ is the image of some $\alpha ' \in \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(P^{r - 2})$. By Lemma 42.32.1 again we can write $\alpha '|_{U^{r - 2}} = (\pi ^{r - 2})^*\alpha _1|_{U^{r - 2}}$ for some $\alpha _1 \in \mathop{\mathrm{CH}}\nolimits _{k + 1}(X)$. By Lemma 42.31.1 we see that the image of $(\pi ^{r - 2})^*\alpha _1$ represents $c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1$. We also see that $\alpha - \pi ^*\alpha _0 - c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1$ is the image of some $\alpha '' \in \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(P^{r - 3})$. And so on. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02TX. Beware of the difference between the letter 'O' and the digit '0'.