Processing math: 100%

The Stacks project

Lemma 42.36.3. Let (S, \delta ) be as in Situation 42.7.1. Let X be locally of finite type over S. Let \mathcal{E} be a finite locally free sheaf of rank r on X. Let

p : E = \underline{\mathop{\mathrm{Spec}}}(\text{Sym}^*(\mathcal{E})) \longrightarrow X

be the associated vector bundle over X. Then p^* : \mathop{\mathrm{CH}}\nolimits _ k(X) \to \mathop{\mathrm{CH}}\nolimits _{k + r}(E) is an isomorphism for all k.

Proof. (For the case of linebundles, see Lemma 42.32.2.) For surjectivity see Lemma 42.32.1. Let (\pi : P \to X, \mathcal{O}_ P(1)) be the projective space bundle associated to the finite locally free sheaf \mathcal{E} \oplus \mathcal{O}_ X. Let s \in \Gamma (P, \mathcal{O}_ P(1)) correspond to the global section (0, 1) \in \Gamma (X, \mathcal{E} \oplus \mathcal{O}_ X). Let D = Z(s) \subset P. Note that (\pi |_ D : D \to X , \mathcal{O}_ P(1)|_ D) is the projective space bundle associated to \mathcal{E}. We denote \pi _ D = \pi |_ D and \mathcal{O}_ D(1) = \mathcal{O}_ P(1)|_ D. Moreover, D is an effective Cartier divisor on P. Hence \mathcal{O}_ P(D) = \mathcal{O}_ P(1) (see Divisors, Lemma 31.14.10). Also there is an isomorphism E \cong P \setminus D. Denote j : E \to P the corresponding open immersion. For injectivity we use that the kernel of

j^* : \mathop{\mathrm{CH}}\nolimits _{k + r}(P) \longrightarrow \mathop{\mathrm{CH}}\nolimits _{k + r}(E)

are the cycles supported in the effective Cartier divisor D, see Lemma 42.19.3. So if p^*\alpha = 0, then \pi ^*\alpha = i_*\beta for some \beta \in \mathop{\mathrm{CH}}\nolimits _{k + r}(D). By Lemma 42.36.2 we may write

\beta = \pi _ D^*\beta _0 + \ldots + c_1(\mathcal{O}_ D(1))^{r - 1} \cap \pi _ D^* \beta _{r - 1}.

for some \beta _ i \in \mathop{\mathrm{CH}}\nolimits _{k + i}(X). By Lemmas 42.31.1 and 42.26.4 this implies

\pi ^*\alpha = i_*\beta = c_1(\mathcal{O}_ P(1)) \cap \pi ^*\beta _0 + \ldots + c_1(\mathcal{O}_ D(1))^ r \cap \pi ^*\beta _{r - 1}.

Since the rank of \mathcal{E} \oplus \mathcal{O}_ X is r + 1 this contradicts Lemma 42.26.4 unless all \alpha and all \beta _ i are zero. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.