Effective Cartier divisors on a scheme are the same as invertible sheaves with fixed regular global section.
Lemma 31.14.10. Let $X$ be a scheme.
If $D \subset X$ is an effective Cartier divisor, then the canonical section $1_ D$ of $\mathcal{O}_ X(D)$ is regular.
Conversely, if $s$ is a regular section of the invertible sheaf $\mathcal{L}$, then there exists a unique effective Cartier divisor $D = Z(s) \subset X$ and a unique isomorphism $\mathcal{O}_ X(D) \to \mathcal{L}$ which maps $1_ D$ to $s$.
The constructions $D \mapsto (\mathcal{O}_ X(D), 1_ D)$ and $(\mathcal{L}, s) \mapsto Z(s)$ give mutually inverse maps
\[ \left\{ \begin{matrix} \text{effective Cartier divisors on }X
\end{matrix} \right\} \leftrightarrow \left\{ \begin{matrix} \text{isomorphism classes of pairs }(\mathcal{L}, s)
\\ \text{consisting of an invertible } \mathcal{O}_ X\text{-module}
\\ \mathcal{L}\text{ and a regular global section }s
\end{matrix} \right\} \]
Proof.
Omitted.
$\square$
Comments (3)
Comment #877 by Konrad Voelkel on
Comment #3582 by Laurent Moret-Bailly on
Comment #3706 by Johan on
There are also: