Lemma 31.14.9. Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible sheaf. Let $s \in \Gamma (X, \mathcal{L})$.
Consider closed immersions $i : Z \to X$ such that $i^*s \in \Gamma (Z, i^*\mathcal{L})$ is zero ordered by inclusion. The zero scheme $Z(s)$ is the maximal element of this ordered set.
For any morphism of schemes $f : Y \to X$ we have $f^*s = 0$ in $\Gamma (Y, f^*\mathcal{L})$ if and only if $f$ factors through $Z(s)$.
The zero scheme $Z(s)$ is a locally principal closed subscheme.
The zero scheme $Z(s)$ is an effective Cartier divisor if and only if $s$ is a regular section of $\mathcal{L}$.
Comments (0)
There are also: