Lemma 42.39.1. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $\mathcal{E}$ be a finite locally free sheaf of rank $r$ on $X$. Let $\mathcal{L}$ be an invertible sheaf on $X$. Then we have

42.39.1.1
\begin{equation} \label{chow-equation-twist} c_ i({\mathcal E} \otimes {\mathcal L}) = \sum \nolimits _{j = 0}^ i \binom {r - i + j}{j} c_{i - j}({\mathcal E}) c_1({\mathcal L})^ j \end{equation}

in $A^*(X)$.

Proof. This should hold for any triple $(X, \mathcal{E}, \mathcal{L})$. In particular it should hold when $X$ is integral and by Lemma 42.35.3 it is enough to prove it holds when capping with $[X]$ for such $X$. Thus assume that $X$ is integral. Let $(\pi : P \to X, \mathcal{O}_ P(1))$, resp. $(\pi ' : P' \to X, \mathcal{O}_{P'}(1))$ be the projective space bundle associated to $\mathcal{E}$, resp. $\mathcal{E} \otimes \mathcal{L}$. Consider the canonical morphism

$\xymatrix{ P \ar[rd]_\pi \ar[rr]_ g & & P' \ar[ld]^{\pi '} \\ & X & }$

see Constructions, Lemma 27.20.1. It has the property that $g^*\mathcal{O}_{P'}(1) = \mathcal{O}_ P(1) \otimes \pi ^* {\mathcal L}$. This means that we have

$\sum \nolimits _{i = 0}^ r (-1)^ i (\xi + x)^ i \cap \pi ^*(c_{r - i}(\mathcal{E} \otimes \mathcal{L}) \cap [X]) = 0$

in $\mathop{\mathrm{CH}}\nolimits _*(P)$, where $\xi$ represents $c_1(\mathcal{O}_ P(1))$ and $x$ represents $c_1(\pi ^*\mathcal{L})$. By simple algebra this is equivalent to

$\sum \nolimits _{i = 0}^ r (-1)^ i \xi ^ i \left( \sum \nolimits _{j = i}^ r (-1)^{j - i} \binom {j}{i} x^{j - i} \cap \pi ^*(c_{r - j}(\mathcal{E} \otimes \mathcal{L}) \cap [X]) \right) = 0$

Comparing with Equation (42.37.1.1) it follows from this that

$c_{r - i}(\mathcal{E}) \cap [X] = \sum \nolimits _{j = i}^ r \binom {j}{i} (-c_1(\mathcal{L}))^{j - i} \cap c_{r - j}(\mathcal{E} \otimes \mathcal{L}) \cap [X]$

Reworking this (getting rid of minus signs, and renumbering) we get the desired relation. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).