The Stacks project

Lemma 82.28.4. In Situation 82.2.1 let $X/B$ be good. Let $\mathcal{E}$ be a locally free $\mathcal{O}_ X$-module of rank $r$. Then $c_ j(\mathcal{L}) \in A^ j(X)$ commutes with every element $c \in A^ p(X)$. In particular, if $\mathcal{F}$ is a second locally free $\mathcal{O}_ X$-module on $X$ of rank $s$, then

\[ c_ i(\mathcal{E}) \cap c_ j(\mathcal{F}) \cap \alpha = c_ j(\mathcal{F}) \cap c_ i(\mathcal{E}) \cap \alpha \]

as elements of $\mathop{\mathrm{CH}}\nolimits _{k - i - j}(X)$ for all $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$.

Proof. Let $X' \to X$ be a morphism of good algebraic spaces over $B$. Let $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X')$. Write $\alpha _ j = c_ j(\mathcal{E}) \cap \alpha $, so $\alpha _0 = \alpha $. By Lemma 82.28.1 we have

\[ \sum \nolimits _{i = 0}^ r (-1)^ i c_1(\mathcal{O}_{P'}(1))^ i \cap (\pi ')^*(\alpha _{r - i}) = 0 \]

in the chow group of the projective bundle $(\pi ' : P' \to X', \mathcal{O}_{P'}(1))$ associated to $(X' \to X)^*\mathcal{E}$. Applying $c \cap -$ and using Lemma 82.26.8 and the properties of bivariant classes we obtain

\[ \sum \nolimits _{i = 0}^ r (-1)^ i c_1(\mathcal{O}_{P'}(1))^ i \cap \pi ^*(c \cap \alpha _{r - i}) = 0 \]

in the Chow group of $P'$. Hence we see that $c \cap \alpha _ j$ is equal to $c_ j(\mathcal{E}) \cap (c \cap \alpha )$ by the uniqueness in Lemma 82.28.1. This proves the lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ES1. Beware of the difference between the letter 'O' and the digit '0'.