Lemma 82.30.2. In Situation 82.2.1 let $X/B$ be good. Let $\mathcal{E}$, $\mathcal{F}$ be finite locally free sheaves on $X$ of ranks $r$, $r - 1$ which fit into a short exact sequence

where $\mathcal{L}$ is an invertible sheaf. Then

in $A^*(X)$.

Lemma 82.30.2. In Situation 82.2.1 let $X/B$ be good. Let $\mathcal{E}$, $\mathcal{F}$ be finite locally free sheaves on $X$ of ranks $r$, $r - 1$ which fit into a short exact sequence

\[ 0 \to \mathcal{L} \to \mathcal{E} \to \mathcal{F} \to 0 \]

where $\mathcal{L}$ is an invertible sheaf. Then

\[ c(\mathcal{E}) = c(\mathcal{L}) c(\mathcal{F}) \]

in $A^*(X)$.

**Proof.**
The proof is identical to the proof of Chow Homology, Lemma 42.40.2 replacing the lemmas used there by Lemmas 82.30.1 and 82.29.1.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)